• Luana Ribeiro Macedo Universidade de São Paulo
  • João Luiz Martins Basso Universidade Federal de Pelotas
  • Yoshihiro Yamasaki Universidade Federal de Pelotas




Data Assimilation. WRF. TRMM.


The WRF mesoscale system 4DVAR data assimilation technique have been used with the purpose of evaluating the impact of the meteorological data assimilation on the numeric time prognosis over the Rio Grande do Sul state. It has been done utilizing the surface and altitude data. The consistency analysis has been done evaluating the numerical prognosis exploring the differences between the analysis with and without data assimilation. The produced prognosis results have been compared spatially using the TRMM satellite data as well as the Canguçu radar reflectivity data. The accumulated rainfall has been validated and compared spatially with the TRMM data for the time period of 12 hours comprehended between October 29th and 30th of 2014. It was possible to realize that as well as the WRF, the WRFVAR overestimated the rainfall values. The radar reflectivity field without data assimilation for October 30th at 06:00UTC detected most accurately the reflectivity centers over the state. On the other hand this field with data assimilation did not present good skill. The temperature field analyses reveal that the 4DVAR assimilation system contributes, one way or another, presenting a little improvement for some points compared to the real data.


Download data is not yet available.


CPTEC (2015). Centro de pesquisas e estudos climáticos.

URL http://www.satelite.cptec.inpe.br/home.

De Gonçalves, L. G. G., Shuttleworth, W. J., Nijssen, B.,

Burke, E. J., Marengo, J. A., Chou, S. C., Houser, P.,

Toll, D. L. (2006). Evaluation of model-derived and

remotely sensed precipitation products for continental

south america. Journal of Geophysical Research, 111.

Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation

and Predictability. Cambridge University Press.

Lorenc, A. C. (1986). Analysis methods for numerical weather

prediction. Quarterly Journal of Royal Meteorology

Society, 112(474), 1177–1194.

Macedo, L. R., Alves, R. C. M., Basso, J. L. M., Yamasaki,

Y. (2014). Análise do desempenho do modelo wrf com

alta resolução espacial na previsão de precipitação

acumulada. Ciência e Natura, Edição Especial, 497–502.

Mitra, A. K., Bohra, A. K., Rajeevan, M. N., Krishnamurti,

T. N. (2009). Daily indian precipitation analysis

formed from a merge of rain-gauge data with the

trmm tmpa satellite-derived rainfall estimates. Journal

of the Meteorological Society of Japan, 87A, 265–279.

REDEMET (2015). URL http://www.redemet.aer.mil.


Rozante, J. R., Cavalcanti, I. F. A. (2008). Regional eta

model experiments: Salljex and mcs development.

Journal of Geophysical Research, 113.

Rozante, J. R., Moreira, D. S., De Gonçalves, L. G. G.,

Vila, D. A. (2010). Combining trmm and surface observation

precipitation: Technique and validation over

south america. Weather and Forecasting, 25, 885–894.

Skamarock, J. B., W.C.and Klemp, Dudhia, J., Gill,

D. O., Barker, D. M., Duda, H. X., M. G., Wang,

W., Powers, J. G. (2010). A Description of the Advanced

Research WRF Version 3. National Center for Atmospheric

Research, Boulder, Colorado, United States

of America, URL http://www2.mmm.ucar.edu/wrf/




How to Cite

Macedo, L. R., Basso, J. L. M., & Yamasaki, Y. (2016). WRF-4DVAR EVALUATION OF AN EXTREME EVENT OVER RIO GRANDE DO SUL. Ciência E Natura, 38(2), 1077–1085. https://doi.org/10.5902/2179460X18698




Similar Articles

You may also start an advanced similarity search for this article.