EVALUATION OF THE ENSEMBLE OF PHYSICAL PARAMETERIZATIONS OF THE MM5 MODEL IN THE EVENT OF INTENSE RAINFALL OCCURRED BETWEEN THE 5TH AND THE 6TH OF APRIL OF 2010 IN THE RIO DE JANEIRO CITY

Clarice Buarque de Macedo Lira, Marcio Cataldi

Abstract


The city of Rio de Janeiro is often affected by meteorological systems that cause intense rainfalls. These events bring about economic and social disruptions of significant magnitude. This paper analyses the meteorological event occurred between the 05th and 06th of April 2010 in the city of Rio de Janeiro, using numerical modelling by MM5 model (PSU/NCAR Mesoscale Model). From 20h of the 5th until 8h of the 6th there was on average 178 mm of rainfall in the this city, almost twice the expected for April, bringing about floods, landslides, and many deaths. In this study, eight parameterization groups were used, with different configurations of cloud microphysics, cumulus and atmospheric boundary layer. Two simulation rounds were performed, starting at different times and the simulation results were compared with the observed precipitation data, obtained from pluviometric stations from the “Alerta-Rio” system. Thus, it was possible to analyse the effectiveness of the MM5 model for prognosticate extreme rainfall events as some of the model configurations have captured the position and/or intensity of the cores with intense rainfall with a three-hour time gap in some cases. Therefore, this prognostic model had proven that it can be a useful tool to forecast and reduce the consequences of extreme rainfall events in Rio de Janeiro city.

Keywords


MM5, ensemble de parametrizações físicas, eventos severos

References


AMENGUAL, A., ROMERO, R., & ALONSO, S. (2008). Hydrometeorological ensemble simulations of flood events over a small basin of Majorca Island, Spain. Quarterly Journal of the Royal Meteorological Society, 134(634), 1221-1242.

BRAY, M., HAN, D., XUAN, Y., BATES, P., & Williams, M. (2011). Rainfall uncertainty for extreme events in NWP downscaling model. Hydrological Processes, 25(9), 1397-1406.

COELHO, F. G., DA HORA, M. A. G. M., DA HORA, A. F. (2010). The storms in Rio de Janeiro City in April 2010. Engevista, 13 (1), 57-62.

MACHADO, C. O. (2009). Climatologia da precipitação no município do Rio de Janeiro. Revista Brasileira de Meteorologia, 24(1), 24-38.

COSTA E SOUSA, T. A. S. (2002). Previsão Meteorológica em Portugal Continental utilizando o modelo operacional e de investigação MM5. M. Sc. Universidade Técnica de Lisboa, Instituto Superior Técnico. Lisboa, Portugal. 120p.

DODLA, V. B. R.; RATNA, S. B. (2010). Mesoscale characteristics and prediction of an unusual extreme heavy precipitation event over India using high resolution mesoscale model. Atmospheric Research, v. 95, 255-269.

DUDHIA, J., GILL, D., MANNING, K., BOURGEOIS, A., WANG and BRUYERE, C. (2002). PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and Users’ Guide (MM5 Modeling SystemVersion 3).

FERNÁNDEZ, J., MONTÁVEZ, J. P., SÁENZ, J., GONZÁLEZ-ROUCO, J. F., & ZORITA, E. (2007). Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D4).

GRELL, G. (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121, 764-787.

GRELL, G. A., DUDHIA J., STAUFFER D. R. (1994). A description of the fifth generation Penn State/NCAR mesoscale model (MM5), NCAR Technical Note. National Center for Atmospheric Research, Boulder.

JEREZ, S., MONTAVEZ, J. P., GOMEZ-NAVARRO, J. J., LORENTE-PLAZAS, R., GARCIA-VALERO, J. A., & JIMENEZ-GUERRERO, P. (2013). A multi-physics ensemble of regional climate change projections over the Iberian Peninsula.Climate dynamics, 41(7-8), 1749-1768.

ONS (Operador Nacional do Sistema Elétrico). Aprimoramento da Metodologia de remoção de viés da previsão de precipitação – aplicação na bacia do Alto Rio São Francisco. Nota técnica, 2013.

OYAMA, M. D. (2006). Erros sistemáticos no clima da região tropical da América do Sul simulado pelo modelo regional MM5 em baixa resolução horizontal. Revista Brasileira de Meteorologia, 21(1), 118-133.

PADILHA, S. F. (2011). Simulações de Eventos de Chuvas Intensas no Estado do Rio de Janeiro usando o Modelo WRF. Dissertação de Mestrado. Universidade Federal do Rio de Janeiro, Rio de Janeiro.

QUEEN, A., ZHANG, Y. (2008). Examining the sensitivity of MM5- CMAQ predictions to explicit microphysics schemes and horizontal grid resolutions, Part I-database, evaluation protocol, and precipitation predictions, Atmos. Environ., 42, 3842–3855.

REBELLO, E. R. G., CARVALHO, B. E. F. C., COSTA, J. A. V., FREITAS, M. A. S., CAVALCANTE, O. A. (2012) Diagnóstico, Monitoramento e Prognóstico das Chuvas Intensas no Rio de Janeiro no período de 06 a 09 de Abril de 2010. In: Congresso Brasileiro Sobre Desastres Naturais, 2012, Rio Claro - SP. Anais do Congresso Brasileiro Sobre Desastres Naturais. Rio Claro: Editora da Unesp.

SCHULTZ, P. (1995): An explicit cloud physics parameterization for operational numerical weather prediction, Mon. Weather Rev., 123, 3331–3343.ZHANG, Y., CHENG, S. H., CHEN, Y. S., & WANG, W. X. (2011). Application of MM5 in China: Model evaluation, seasonal variations, and sensitivity to horizontal grid resolutions. Atmospheric Environment, 45(20), 3454-3465.




DOI: http://dx.doi.org/10.5902/2179460X17116

Refbacks

  • There are currently no refbacks.


Copyright (c)



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.