APPLICATION OF MOLECULAR GENETICS TO IMPROVING THE QUALITY OF BEEF

Authors

  • Jackeline Karsten Kirinus Universidade do Oeste de Santa Catarina (UNOESC)
  • Ana Paula Burin Fruet Universidade Federal de Santa Maria - UFSM
  • César Teixeira Universidade de Zaragoza.
  • Andrea Cristina Dörr UFSM
  • José Laerte Nörnberg UFSM

DOI:

https://doi.org/10.5902/2236117013181

Keywords:

Marker molecular, PCR, SNPs.

Abstract

The beef cattle industry is of great economic importance in global and national context. The objectives of this paper is to review some important aspects of the application of molecular genetics to improving the quality of beef with a view to defining quality of meat product and more demanding consumer markets. Considering the need of the consumer market to assess the meat produced, it is necessary to know the economic characteristics of the product to be consumed, as well as standardize and implement more sophisticated techniques for the evaluation of the rheological properties of meat. In this context, due to the numerous biochemical processes which are involved in the activation systems of proteolytic enzymes and degradation of myofibrillar proteins, molecular methods are being used as a tool for rating the genetic factors that influence the tenderness of beef.

Downloads

Download data is not yet available.

Author Biographies

Jackeline Karsten Kirinus, Universidade do Oeste de Santa Catarina (UNOESC)

Profª. Efetiva do Departamento de Medicina Veterinária, Campus Xanxerê II, Universidade do Oeste de Santa Catarina (UNOESC), Xanxerê, Santa Catarina, Brasil.

Ana Paula Burin Fruet, Universidade Federal de Santa Maria - UFSM

Aluna de mestrado do Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brasil.

César Teixeira, Universidade de Zaragoza.

Advogado e Mestre em Direito Ambiental pela 3Advogado e Mestre em Direito Ambiental pela Universidade de Zaragoza (Espanha). Doutorando em Direito Civil pela Universidade de Zaragoza.

Andrea Cristina Dörr, UFSM

Profª. Adjunto do Departamento de Ciências Econômicas, CCR, UFSM, Santa Maria, Rio Grande do Sul, Brasil.

José Laerte Nörnberg, UFSM

Profº. Adjunto do Departamento de Tecnologia e Ciência dos Alimentos (DTCA), CCR, UFSM, Santa Maria, Rio Grande do Sul, Brasil.

References

ANDERSON, R.V. et al. An evaluation of production and economic efficiency of two beef systems from calving to slaughter. Animal Science, v. 84, p. 694-704, 2005.

BARENDSE, W. et al. Variation at the Calpain 3 gene is associated with meat tenderness in zebu and composite breeds of cattle. BMC genetics, v. 9, n. 1, p. 41, 2008.

BARENDSE, W. DNA markers for meat tenderness. International patent application PCT/AU02/00122. International patent publication WO 02/064820 A1. 2002.

BERNARD, C. et al. New indicators of beef sensory quality revealed by expression of specific genes. Journal of Agricultural and Food Chemistry, v. 55, n. 13, p.5229-5237, 2007.

BISHOP, M. D. et al. Rapid communication: Restriction fragment length polymorphisms in the bovine calpastatin gene. Journal of Animal Science, v. 71, p. 2277, 1993.

BRASIL. Lei 11.105, de 24 de março de 2005. Regulamenta os incisos II, IV e V do § 1o do art. 225 da Constituição Federal. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 24 mar. 2005. Disponível em: <http://legislacao.planalto.gov.br/legisla/legislacao.nsf/Viw_Identificacao/lei%2011.105-2005?OpenDocument>. Acesso em: 11 mar. 2014.

BUCHANAN F. C. et al. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetic Selection Evolution v. 34, p. 105-116, 2002.

CAÑEQUE, V.; SAÑUDO, C. Estandarización de lãs metodologias para evaluar la calidad del producto (animal vivo, cal, carne y grasa) em los rumiantes. Monografias Del Instituto Nacional de Investigación y Tecnologia Agrária y Alimentaria. Serie Ganadera, nº 3 – 2005. Madrid, España. 448 páginas, 2005. ISBN 84-7498-509-9.

CASAS, E. et al. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. Journal of Animal Science, v. 83, p. 13-19, 2005.

CASAS, E. et al. Effects of calpastatin and µ-calpain markers in beef cattle on tenderness traits. Journal of Animal Science, v. 84, n. 3, p. 520-525, 2006.

CASSAR-MALEK, I. et al. Application of gene expression studies in livestock production systems: a European perspective. Australian Journal of Experimental Agriculture, v. 48, p. 701-710, 2008.

CHUNG, H.Y.; DAVIS, M.E.; HINES, H.C. Genetic variation detected by PCR-RFLP in intron 6 of the bovine calpastatin gene. Animal Genetics, v. 32, p. 53-53, 2001a.

CHUNG, H.Y.; DAVIS, M.E.; HINES, H.C. Relationship of two PCR–RFLP in the bovine calpastatin gene with calpastatin activity, meat tenderness and carcass traits. Research and Reviews: Beef and Sheep , v.181, p.29-34, 2001b. (OARDC Special. Circular, 181-01).

CORVA P. et al. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genetics and Molecular Biology, v. 30, p. 1064–1069, 2007.

COSTELLO S. et al. Association of polymorphisms in the calpain I, calpain II and growth hormone genes with tenderness in bovine M. longissimus dorsi. Meat Science, v. 75, p. 551-557. 2007.

CURI, R. A. et al. Alternative genotyping method for the single nucleotide polymorphism A2959G (AF159246) of the bovine CAST gene. Pesquisa Agropecuária Brasileira, v. 43, n. 5, p. 657-659, 2008.

DRANSFIELD, E. Modeling postmortem tenderization. IV - Role of calpain and calpastatin in conditioning. Meat Science, v. 34, n. 2, p. 217- 234, 1993.

FINK, A. L. Chaperone-mediated protein folding. Physiology review, v. 79, n. 2, p. 425-442, 1999.

FRYLINCK, L. et al. Evaluation of biochemical parameters and genetic markers for association with meat tenderness in South African feedlot cattle. Meat Sience, v. 83, p. 657-665, 2009.

GEARY T. W. et al. Leptin as a predictor of carcass composition in beef cattle. Journal of Animal Science, v. 81, p. 1-8, 2003.

GEESINK, G. H. µ-Calpain is essential for postmortem proteolysis of muscle proteins1,2. Journal Animal Science, v. 84, p. 2834–2840, 2006.

GOLL, D. E. et al. Role of the calpain system in muscle growth. Biochimie, v. 74, p. 225-237, 1992.

GOLL, D. E. et al. The Calpain System. Physiological Reviews, v. 83, p. 731-801, 2003.

GUILLEMIN, N. et al. Functional analysis of beef tenderness. Journal of Proteomics, v. 75, p. 352–365, 2011.

GUO, D. et al. Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochemical and Biophysical Research Communications, v. 337, p. 1308–1318, 2005.

HAEGEMAN, A.; VAN ZEVEREN, A.; PEELMAN, L. J. New mutation in exon 2 of the bovine leptin gene. Animal Genetics, v. 31, p. 70, 2000.

HOCQUETTE, J. F. et al. Recent advances in cattle functional genomics and their application to beef quality. Animal, v. 1, p. 159-173, 2007.

GRIGORIAN, M. et al. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein - Functional consequences of their interaction. Journal of Biological Chemistry, v. 276, p. 22699–22708, 2001.

LARA, M. A. C. et al. Leptin gene polymorphism (SNP305) in cattle and its relationship in the tenderness of the meat. Actas Iberoamericanas de Conservación Animal, v. 1, p. 195-198, 2011.

LEE, S. et al. Effect of ion fluid injection on beef tenderness in association with calpain activity. Meat Science, v. 56, p. 301-310, 2000.

LISA, C.; DI STASIO, L. Variability of m-Calpain and Calpastatin genes in cattle. Italian Journal of Animal Science, v. 8, p. 99–101, 2009.

LONERGAN, S. M. et al. Relationship of restriction fragment length polymorphisms (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. Journal of Animal Science, v. 73, p. 3608–3612, 1995.

MORRIS, C. A. et al. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford-cross cattle. Animal Genetics, v. 37, p. 411-414, 2006.

OUALI, A. et al. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, v. 74, p. 44-58, 2006.

PAGE, B. T. et al. Evaluation of single nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. Journal of Animal Science, v. 80, p. 3077-3085, 2002.

PAGE, B. T. et al. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. Journal of Animal Science, v. 82, p. 3474–3481, 2004.

PICARD, B. et al. Skeletal muscle proteomics in livestock production. Briefings in functional genomics, v. 9, n. 3, p. 259-278, 2010.

PINTO, L. F. B. et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genetics and Molecular Research, v. 9, n. 3, p. 1431-1442, 2010b.

RENAND, G. et al. Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Science, v. 59, p. 49-60, 2001.

RIBECA, C. et al. Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle. Animal Genetics, v. 44, n. 2, p. 193-196, 2013.

SCHENKEL, F. S. et al. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. Journal of Animal Science, v. 84, p. 291–299, 2006.

SUN, Y.; MACRAE, T. H. Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences, v. 62, p. 2460–76, 2005.

WHITE S. N. et al. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. Journal of Animal Science, v. 83, n. 9, p. 2001-2008, 2005.

YANG, X. L. et al. Proteomic Dissection of Cell Type-Specific H2AX-Interacting Protein Complex Associated with Hepatocellular Carcinoma. Journal of Proteome Research, v. 9, p. 1402–1415, 2010.

YOU, J. et al. Treatment with the Proteasome Inhibitor MG132 during the End of Oocyte Maturation Improves Oocyte Competence for Development after Fertilization in Cattle. PloS one, v. 7, n. 11, p. e48613, 2012.

SAÑUDO, C.; JIMENO, V.; CARVIÑO, M. Producción de ganado vacuno de carne y tipos comerciales en España. Schering-Plough Animal Health, Zaragoza, Espanha, 2008. ISBN 978-84-691-2300-3. 308 p.

United States Department of Agriculture (USDA). Livestock an Poultry: Word Markets and Trade. World Exports 2013 Revised: Broiler Meat Higher, Beef Lower and Pork Unchanged. Washington, D.C. 2013. Disponível em: <http://www.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf>. Acesso em 9 de jun. 2013.

Published

2014-06-05

How to Cite

Kirinus, J. K., Fruet, A. P. B., Teixeira, C., Dörr, A. C., & Nörnberg, J. L. (2014). APPLICATION OF MOLECULAR GENETICS TO IMPROVING THE QUALITY OF BEEF. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 18, 165–174. https://doi.org/10.5902/2236117013181

Most read articles by the same author(s)

1 2 3 4 > >>