Relationships between determinants of foreign direct and portfolio investment in Brazil
DOI:
https://doi.org/10.5902/2357797588097Keywords:
Foreign direct investment, Foreign portfolio investment, Cluster analysis, Vector error correctionAbstract
This research analyzes the relationships between foreign direct investment (FDI) and portfolio investment (PI) in Brazil, along with their domestic macroeconomic determinants, aiming to address the following question: are there differences between FDI and PI in Brazil and their internal macroeconomic determinants? For exploratory analysis, the study employed literature review, descriptive statistics, and cluster analysis. Confirmatory analysis was conducted through the estimation of two vector error correction models (VECM), with FDI and PI as dependent variables. The independent variables included risk, trade openness, exchange rate, and inflation rate. Cluster analysis was used as a preprocessing step for VEC models, effectively classifying variables based on their exogeneity. VEC model estimates indicated that the risk variable had a negative effect on FDI but a positive effect on PI. Trade openness did not stimulate FDI; however, it was favorable for PI. Exchange rate depreciation had different impacts on foreign investment, stimulating FDI but discouraging PI. The inflation rate showed a positive relationship with FDI but a negative relationship with PI.
Downloads
References
AMISANO, G; GIANNINI, C. Topics in structural VAR econometrics. 2. ed. Berlin: Spring-Verlag, 1997.
BANCO CENTRAL DO BRASIL. Sistema Gerenciador de Séries Temporais. Disponível em: https://www.bcb.gov.br/?SERIESTEMP. Acesso em: 04 jan. 2021.
BITTENCOURT, G. M. Três ensaios sobre investimento direto estrangeiro no Brasil. 2016. 125 f. Tese (Doutorado em Economia Aplicada) - Universidade Federal de Viçosa, Viçosa. 2016.
BOX, G. E. P.; PIERCE, D. A. Distribution of Residual Autocorrelations in AutoregressiveIntegrated Moving Average Time Series Models. Journal of the American Statistical Association, v. 65, n. 332, p. 1509-1526, 1970.
BRANDT, P. T.; WILLIAMS, J. T. Multiple Time Series Models. California: Sage, 2007.
BREUSCH, T. S. Testing for autocorrelation in dynamic linear models. Australian Economic Papers, v. 17, n. 31, p. 334-355 1978.
BREITUNG, J; BRÜGGEMANN, R.; LÜTKEPOHL, H. Structural vector autoregressive modeling and impulse responses. In: LÜTKEPOHL, H.; KRÄTZIG, M. (Ed.). Applied time series econometrics. New York: Cambridge University Press, 2004.
BROOKS, C. Introductory Econometrics for Finance. New York: Cambridge University Press, 2008.
BUENO, R. L. S. Econometria de séries temporais. 2.ed. São Paulo: Cengage Learning, 2015.
CONCER, R. O. Three essays on foreign direct investment. 2017. 85 f. Tese (doutorado) - Escola de Administração de Empresas de São Paulo. São Paulo. 2017.
DIAS, A. R. Determinantes do investimento direto externo para economias em desenvolvimento e em transição, 1996-2011. 2014, p. 80. Dissertação - Faculdade de Administração, Contabilidade e Economia da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2014.
DICKEY, D. A.; FULLER, W. A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, v.74, n.366, p.427-431, 1979.
DICKEY, D. A.; FULLER, W. A Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, v. 49, p.1057-1073, 1981.
ENDERS, W. Applied Econometric Time Series. 4. ed. Nova Jersey: Wiley, 2015.
GODFREY, L. G. Testing for higher order serial correlation in regression equations when the regressors include lagged dependent variables. Econometrica, 1978.
GONÇALVES JUNIOR, W. A Atividade do Capital Estrangeiro na Bovespa. 2011. 132f. Tese (doutorado) - Escola de Administração de Empresas de São Paulo. São Paulo. 2011.
GREENE, W. H. Econometrics Analysis. 6. ed. New Jersey: Pearson Education, 2008.
HAMILTON, J. D. Time series analysis. New Jersey: Princeton University Press, 1994.
HARRIS, R.I.D. Using cointegration analysis in econometric modelling. London: Prentice-Hall-Harvester Wheatsheaf, 1995.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Homepage. 2024. Disponível em: https://www.ibge.gov.br. Acesso em: 04 jan. 2021.
INTERNATIONAL MONETARY FUND (IMF). Revision of the Fifth Edition of the IMF's Balance of Payments Manual. Disponível em: https://www.imf.org/external/np/sta/bop/bopman5.htm. Acesso em: 04 jan. 2021.
INSTITUTO DE PESQUISA ECONÔMICA APLICADA (IPEA). Ipeadata. Metodologia EBMI. Disponível em: http://www.ipeadata.gov.br/ExibeSerie.aspx?serid=40940&module=M. Acesso em: set. 2020.
INSTITUTO DE PESQUISA ECONÔMICA APLICADA (IPEA). Ipeadata. Disponível em: http://www.ipeadata.gov.br/. Acesso em: 04 jan. 2021.
INSTITUTO DE PESQUISA ECONÔMICA APLICADA (IPEA). Ipeadata. Metodologia EBMI. Disponível em: http://www.ipeadata.gov.br/ExibeSerie.aspx?serid=40940&module=M. Acesso em: 09 jan. 2021.
JOHANSEN, S. Statistical analysis of cointegration vectors. Journal of Economic Dynamic and Control, v.12, p.231-254,1988.
JOHANSEN, S. Times series cointegration. Creates Research Paper, n. 38, p. 1 – 17, 2014.
KOOP, G. Analysis of financial data. John Wiley & Sons Ltd, 2006.
KWIAKOWSKI, D.; PHILLIPS, P. C. B.; SCHMIDT, P.; SHIN, Y. Testing the alternative of stationary against the alternative of a unit root: how sure are we that economic time series have a unit root? Journal of Econometrics, v. 54, p. 159-178, 1992.
LJUNG, G. M.; BOX, G. E. P. On a measure of lack of fit in time series models. Biometrika, v. 65, n. 2, p. 297–303, 1978.
LÜTKEPOHL, H. New introduction to multiple time series analysis. New York: Springer, 2007.
LÜTKEPOHL, H. Vector autoregressive models. EUI Working Paper, n. 30, p. 2 -2 28, 2011.
MCMILLAN, M. et. Al. Globalization Structural Change Productivity Growth with Africa update. World Development, v. 63, p. 11–32, 2014
MINISTÉRIO DE DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR (MDIC).Balança Comercial. Disponível em: http://www.mdic.gov.br/index.php/balanca-comercial. Acesso em: 04 jan. 2021.
SCHNORRENBERGER, R.; MEURER, R. Determinantes do Investimento Estrangeiro em Carteira e Total para Economias Emergentes de 2007 a 2014. Revista Brasileira de Finanças (Online), Rio de Janeiro, v.15, n. 4, p. 605-629, 2017.
SHUMWAY, R. H.; STOFFER, D. S. Time series analysis and its applications: with R examples. New York, Ny: Springer, 2006.
SILVA FILHO, E. B. Trajetória Recente do Investimento Estrangeiro Direto e em Carteira no Brasil. Boletim de Economia e Política Internacional – BEPI. Brasília: IPEA, n. 19, Jan./Abr. 2015.
UEDA, R. M. et al. How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: A VAR-based model and cluster analysis. Physica A. v. 557, n. 124872, 2020.
VICINI, L. Técnicas multivariada exploratórias: teorias e aplicações no software Statistica. Santa Maria, RS: Editora UFSM, 2018.
WORLD BANK. World Bank Open Data. Disponível em: https://data.worldbank.org/. Acesso em: 04 jan. 2021.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.