Imagens espectrais baseadas em UAV usando sensoriamento remoto e YOLOv8 no inventário de Eucalyptus saligna Sm.
DOI:
https://doi.org/10.5902/1980509888522Palavras-chave:
Inteligência artificial, Silvicultura de precisão, Detecção individual de árvoresResumo
Inventários de árvores precisos e de baixo custo em plantações florestais são essenciais para o gerenciamento eficaz da produção. Estimulado por avanços recentes em imagens de Veículos Aéreos Não Tripulados (VANT) juntamente com inteligência artificial, e pelo interesse em desenvolver modelos capazes de apoiar a tomada de decisões sobre manejo silvicultural e florestal, este estudo teve como objetivo avaliar o desempenho de diferentes índices de vegetação na detecção de indivíduos de Eucaliptus saligna usando uma abordagem de modelo de aprendizado profundo aprimorado. O modelo de detecção de indivíduos de árvores foi criado usando o algoritmo YOLOv8n usando imagens RGB de VANT e índices de vegetação (IV) gerados pelo sensor multiespectral a bordo do VANT. Nove IVs foram selecionados para treinamento (65%) e teste (35%) dos modelos. A estrutura proposta demonstrou que os índices MPRI, PSRI e NDVI alcançaram uma pontuação F1 de 0,98 e precisão de 0,97 na detecção de árvores individuais de E. saligna seis meses após o plantio. Nosso estudo demonstra a robustez da estrutura proposta e recomenda a aplicação do índice MPRI na detecção de árvores individuais devido ao seu desempenho eficiente, baixo custo e simplicidade, pois utiliza apenas regiões do espectro visível.
Downloads
Referências
ABDOLLAHNEJAD, A.; PANAGIOTIDIS, D. Tree species classification and health status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging. Remote Sensing, v. 12, n. 22, p. 3722, 2020. DOI: https://doi.org/10.3390/rs12223722
ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507
BARBOSA, B. et al. RGB vegetation indices applied to grass monitoring: a qualitative analysis. Agricultural Research, v. 17, n. 2, p. 349–357, 2019. DOI: https://doi.org/10.15159/ar.19.119
BARNES, E. M. et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Proceedings of the fifth international conference on precision agriculture, Bloomington, MN, USA. 2000.
BOCHKOVSKIY, A.; WANG, C.-Y.; LIAO, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv, 2020. Available at: https://arxiv.org/abs/2004.10934
CHEN, Y. et al. An efficient approach to monitoring pine wilt disease severity based on random sampling plots and UAV imagery. Ecological Indicators, v. 156, p. 111215, 2023. DOI: https://doi.org/10.1016/j.ecolind.2023.111215
CHOI, K. et al. An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google Street view images. ISPRS Journal of Photogrammetry and Remote Sensing, v. 190, p. 165-180, 2022. DOI: https://doi.org/10.1016/j.isprsjprs.2022.06.004
DUARTE, Marciel Lelis; RIBEIRO, Aristides. Influência do El Niño e La Niña na produtividade de plantios de Eucalipto em distintas regiões no Brasil. Ciência Florestal, v. 33, p. e61334, 2023. DOI: https://doi.org/10.5902/1980509861334
DUTTA, A.; ZISSERMAN, A. The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM international conference on multimedia. Anais... 2019. p. 2276-2279.
EUGENIO, F. C. et al. Estimation of soybean yield from machine learning techniques and multispectral rpas imagery. Remote Sensing Applications: Society and Environment, v. 20, p. 100397, nov. 2020. DOI: https://doi.org/10.1016/j.rsase.2020.100397
FAO. Global Forest Resources Assessment 2020. 2020. DOI: https://doi.org/10.4060/ca9825en
GITELSON, A. A. et al. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, v. 30, n. 5, 2003. DOI: https://doi.org/10.1029/2002gl016450
GITELSON, A. A.; GRITZ, Y.; MERZLYAK, M. N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, v. 160, n. 3, p. 271–282, 2003. DOI: https://doi.org/10.1078/0176-1617-00887
GONÇALVES, H.; EMBRAPA SOLOS. Sistema brasileiro de classificação de solos. Embrapa, 2018.
GUO, B. et al. Detection of the Grassland Weed Phlomoides umbrosa Using Multi-Source Imagery and an Improved YOLOv8 Network. Agronomy, v. 13, n. 12, p. 3001, 2023. DOI: https://doi.org/10.3390/agronomy13123001
HUANG, S. et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, v. 32, n. 1, p. 1–6, 2020. DOI: https://doi.org/10.1007/s11676-020-01155-1
INSTITUTO BRASILEIRO DE ÁRVORES. IBÁ. Relatório Anual. Available at: https://iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf. Accessed in: 2022.
IOST FILHO, F. H. et al. Drones: innovative technology for use in precision pest management. Journal of Economic Entomology, v. 113, n. 1, p. 1–25, 8 fev. 2020. DOI: https://doi.org/10.1093/jee/toz268
JEMAA, H. et al. UAV-based computer vision system for orchard apple tree detection and health assessment. Remote Sensing, v. 15, n. 14, p. 3558, 2023. DOI: https://doi.org/10.3390/rs151435587
JINTASUTTISAK, T.; EDIRISINGHE, E.; ELBATTAY, A. Deep neural network-based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, v. 192, p. 106560, 2022. DOI: https://doi.org/10.1016/j.compag.2021.106560
JOSEPH, R. et al. You Only Look Once: Unified, Real-Time Object Detection. arXiv (Cornell University), 2016. DOI: https://doi.org/10.48550/arxiv.1506.02640
KATTENBORN, T. et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, v. 173, p. 24-49, 2021. DOI: https://doi.org/10.1016/j.isprsjprs.2020.12.010
KOPACKOVÁ-STRNADOVÁ, V. et al. Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sensing, v. 13, p. 705, 2021. DOI: https://doi.org/10.3390/rs13040705
LAFETÁ, Bruno Oliveira et al. Eficiência de utilização de macronutrientes em eucalipto por método não destrutivo estimados por redes neurais artificiais. Ciência Florestal, v. 28, n. 2, p. 613-623, 2018. DOI: http://dx.doi.org/10.5902/1980509832049
LIN, T. Y. et al. Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V. Anais... Springer International Publishing, 2014. p. 740-755. DOI: https://doi.org/10.1007/978-3-319-10602-1_48
LING, Q.; ISA, N. A. M.; ASAARI, M. S. M. Precise Detection for Dense PCB Components Based on Modified YOLOv8. IEEE Access, v. 11, p. 116545-116560, 2023. DOI: 10.1109/ACCESS.2023.3325885.
MA, Y. K. et al. Object detection of individual mangrove based on improved YOLOv5. Laser Optoelectron. Prog, v. 59, p. 436-446, 2022. DOI: 10.3788/LOP202259.1828003.
MALABAD, A. M. et al. A combined approach utilizing UAV 3d imaging methods, in-situ measurements, and laboratory experiments to assess water evaporation and trace element uptake by tree species growing in a red gypsum landfill. Journal of Hazardous Materials, v. 425, p. 127977, 2022. DOI: 10.1016/j.jhazmat.2021.127977.
MCFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v. 17, n. 7, p. 1425–1432, 1996. DOI: https://doi.org/10.1080/01431169608948714
MERZLYAK, M. N. et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, v. 106, n. 1, p. 135–141, 199
MICA SENSE. MicaSense RedEdge™ 3 multispectral camera user manual. Seattle: MicaSense, 2015. 33 p. Rev 06, October 2015. Available at: https://support.micasense.com/hc/en-us/articles/215261448-RedEdge-User-Manual-PDF-Download. Accessed in: 28th Nov. 2019.
REDMON, J.; FARHADI, A. YOLO9000: Better, Faster, Stronger. arXiv, 2016, arXiv:1612.08242.
REDMON, Joseph; FARHADI, Ali. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
ROUSE, R.; HAAS, J.; DEERING, D. Monitoring vegetation systems in the great plains with erts. Available at: https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf
ȘANDRIC, I., et al. Tree's detection & health's assessment from ultra-high resolution UAV imagery and deep learning. Geocarto International, v. 37, n. 25, p. 10459-10479, 2022. https://doi.org/10.1080/10106049.2022.2036824
SIKATI, J.; NOUAZE, J. C. YOLO-NPK: A Deep Lightweight Network for Lettuce Nutrient Deficiency Classification Based on Improved YOLOv8 Nano. Engineering Proceedings, v. 58, n. 1, p. 31, 2023. DOI: https://doi.org/10.3390/ecsa-10-16256
TANNURE FARIA, Júlio Cézar et al. Manejo da densidade de plantas durante a produção de mudas em viveiro.Ciência Florestal, v. 29, n. 3, 2019. DOI: https://doi.org/10.5902/1980509830030
TZUTALIN. LabelImg. Git code, 2015. Available at: https://github.com/tzutalin/labelImg
VAHL DE PAULA, B.; SQUIZANI ARRUDA, W.; ETIENNE PARENT, L.; FRANK DE ARAUJO, E.; BRUNETTO, G. Nutrient diagnosis of Eucalyptus at the factor-specific level using machine learning and compositional methods. Plants, v. 9, n. 8, p. 1049, 2020. DOI: https://doi.org/10.3390/plants9081049
VINCINI, M.; FRAZZI, E.; D’ALESSIO, P. Comparison of narrow-band and broad-band vegetation indices for canopy chlorophyll density estimation in sugar beet. In: Precision agriculture'07. Wageningen Academic, 2007. p. 189-196.
WANG, F., et al. Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery. Frontiers in Plant Science, v. 10, p. 453, 2019. DOI: https://doi.org/10.3389/fpls.2019.00453
XIANGSHU, X. I.; KAI, X. I. A.; YINHUI, Y. A. N. G.; XIAOCHEN, D. U.; HAILIN, F. E. N. G. Urban individual tree crown detection research using multispectral image dimensionality reduction with deep learning. National Remote Sensing Bulletin, v. 26, n. 4, p. 711-721, 2022. DOI: https://dx.doi.org/10.11834/jrs.20220163
XU, S.; WANG, R.; SHI, W.; WANG, X. Classification of tree species in transmission line corridors based on YOLO v7. Forests, v. 15, n. 1, p. 61, 2023. DOI: https://doi.org/10.3390/f15010061
YANG, Z.; WILLIS, P.; MUELLER, R. Impact of band-ratio enhanced AWIFS image to crop classification accuracy. Available at: https://www.asprs.org/a/publications/proceedings/pecora17/0041.pdf. Accessed in: 15th May 2024.
ZHANG, L.; ZHAO, C.; FENG, Y.; LI, D. Pests identification of ip102 by yolov5 embedded with the novel lightweight module. Agronomy, v. 13, n. 6, p. 1583, 2023. DOI: https://doi.org/10.3390/agronomy13061583
ZHENG, H., et al. Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, v. 10, n. 6, 2018. DOI: https://doi.org/10.3390/rs10060824
ZHUO, W.; WU, N.; SHI, R.; WANG, Z. UAV mapping of the chlorophyll content in a tidal flat wetland using a combination of spectral and frequency indices. Remote Sensing., v. 14, 827, 2022. DOI: 10.3390/rs14040827.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Ciência Florestal

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.


