Nitrogen metabolism in young plants of African mahogany submitted to different concentrations of cadmium

Autori

DOI:

https://doi.org/10.5902/1980509889275

Parole chiave:

Concentrations, Defense, Mechanisms, Toxic action

Abstract

The present study aimed to evaluate the biochemical changes in nitrogen metabolism promoted by the toxic action of cadmium (Cd) in young African mahogany plants (Khaya grandifoliola). The concentrations of cadmium were applied in the form of cadmium chloride monohydrate (CdCl2.H2O), using a completely randomized design (DIC), with five concentrations of CdCl2.H2O (0, 10, 20, 30 and 40 mg L-1) and seven replicates for each treatment. Analyzing the higher dosage of CdCl2.H2O in the present study, it was verified that the accumulation of cadmium in leaves and roots were equivalent to 228.5% and 743.75%, respectively, followed by reductions in the activity of the nitrate reductase enzyme. For the nitrate concentration, it was verified that the highest contents occurred in the leaves, reducing in the roots, the ammonium on the other hand, presented reduced contents in the foliar tissues. Already for the amino acids there was increase in the leaves. However, it can be inferred that young African mahogany plants (Khaya grandifoliola) it presented possible defense mechanisms that were able to prolong its biochemical activities.

Downloads

I dati di download non sono ancora disponibili.

Biografie autore

Liliane Correa Machado, Federal Rural University of Amazonia

PhD in Plant Production

Universidade Federal Rural da Amazônia, Belém, PA, Brazil

Rafael Costa Paiva, Federal Rural University of Amazonia

Master in Agronomy

Universidade Federal Rural da Amazônia, Belém, PA, Brazil

Cristine Bastos do Amarante, Federal Rural University of Amazonia

Senior Technologist

Universidade Federal Rural da Amazônia, Belém, PA, Brazil

Job Teixeira de Oliveira, Federal University of Mato Grosso do Sul

Professor

Universidade Federal de Mato Grosso do Sul, Chapadão do Sul, MS, Brazil

Fernando França da Cunha, Federal University of Viçosa

Professor

Universidade Federal de Viçosa, Viçosa, MG, Brazil

Priscilla Andrade Silva, Federal Rural University of Amazonia

Professor

Universidade Federal Rural da Amazônia, Belém, PA, Brazil

Cândido Ferreira de Oliveira Neto, Federal Rural University of Amazonia

Professor

Universidade Federal Rural da Amazônia, Belém, PA, Brazil

Riferimenti bibliografici

ALI, H.; KHAN, E.; ILAHI, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry. p. 1-14, 2019. https://doi.org/10.1155/2019/6730305.

ALVES, R. M.; CHAVES, S. F. S.; BASTOS, A. J. R. Viability of the use of African mahogany with cupuassu tree in agroforestry system (AFS). Revista Árvore. v.44, e4407, 2020. http://dx.doi.org/10.1590/1806-908820200000007.

ANDRESEN, E.; PEITER, E.; KÜPPER, H. Trace metal metabolism in plants. Journal of Experimental Botany. v.69, n.5, p. 909 – 954, 2018. https://doi.org/10.1093/jxb/erx465.

ASIM, M.; ULLAH, Z.; XU, F.; AN, L.; ALUKO, O. O.; WANG, Q.; LIU, H. Nitrate signaling, functions, and regulation of root system architecture: Insights from Arabidopsis thaliana. Genes. v.11, n.633, p. 1-23, 2020. https://doi.org/10.3390/genes11060633.

ATAÍDE, W. L. S.; NOGUEIRA, G. A. S.; OLIVEIRA NETO, C. F.; BRITO, A. E. A.; COSTA, T. C.; MARTINS, J. T. S.; SOUSA, A. C. M. Carbon and nitrogen metabolism in young Tachigali vulgaris plants subjected to wáter déficit. Research, Society and Development. v.9, n.10, e6169108732, 2020. https://doi.org/10.33448/rsd-v9i10.8732.

BALI, A.S.; SIDHU, G.P.S.; KUMAR, V. Root exudates ameliorate cadmium tolerance in plants: a review. Environmental Chemistry Letters. v.18, p. 1243–1275, 2020. https://doi.org/10.1007/s10311-020-01012-x.

CARDOSO, K. P.; PALHETA, J. G.; SOUSA, J. D. C.; NASCIMENTO, V. R.; NOGUEIRA, G. A. D. S.; MACHADO, L. C.; SANTOS FILHO, B. G. Physiological and biochemical metabolism in Jatoba plants (Hymenaea courbaril L.) affected by water stress and flooding. Australian Journal of Crop Science. v.11, n.7, p. 844-852, 2017. https://doi.org/10.21475/ajcs.17.11.07.pne498.

CATALDO, D. A.; HAROON, S. L. E.; YOUGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commum Soil Science and Plant Analyse, v.6, n.1, p. 71-80, 2008. https://doi.org/10.1080/00103627509366547.

CONCEIÇÃO, S. S.; CRUZ, F. J. R.; LIMA, E. U.; LIMA, V. U.; SILVA TEIXEIRA, J. S.; SOUSA, D. J. P.; OLIVEIRA NETO, C. F. Cadmium toxicity and phytoremediation in trees - A review. Australian Journal of Crop Science. v.14, n.5, p. 857-870, 2020. https://doi.org/10.21475/ajcs.20.14.05.p2477.

GLOSER, V.; DVORACKOVA, M.; MOTA, D. H.; PETROVIC, B.; GONZALEZ, P.; GEILFUS, C. M. Early changes in nitrate uptake and assimilation under drought in relation to transpiration. Frontiers in Plant Science. v.11, n.602065, p. 1-11,2020. https://doi.org/10.3389/fpls.2020.602065.

CRESPO, C. M. G.; PISCOYA, V. C.; MORAES, A. S.; FRANÇA, M. V. D.; FERNANDES, M. M.; CUNHA FILHO, M.; & ARAÚJO FILHO, R. N. D. (2024). Humic fractions of soil carbon under agroforestry system in altitude swamp Pernambucano. Ciência Florestal, 34, e65061, 2024.DOI: https://doi.org/10.5902/1980509865061.

HAGEMAN, R. H.; REED, A. J. Nitrate reductase from higher plants. Methods in Enzimology, v.69, 270-280, 1980.https://doi.org/10.1016/S0076-6879(80)69026-0.

HERNÁNDEZ-BARANDA, Y.; RODRÍGUEZ-HERNÁNDEZ, P.; PEÑA-ICART, M.; MERIÑO-HERNÁNDEZ, Y.; CARTYA-RUBIO, O. Toxicity of cadmium in plants and strategies to reduce its effects. Case study: the tomato. Cultivos Tropicales. v.40, n.3, e-10, 2019. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S025859362019000300010&lng=en&nrm=iso&tlng=en.

IBÁ - Indústria Brasileira de Árvores. (2024). Relatório Anual IBÁ 2024. 99 p. https://iba.org/datafiles/publicacoes/relatorios/relatorio2024.pdf.

ISMAEL, M. A.; ELYAMINE, A. M.; MOUSSA, M. G.; CAI, M.; ZHAO, X.; HU, C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. v.11, p. 255-277, 2019. https://doi.org/10.1039/C8MT00247A.

KETEHOULI, T.; IDRICE CARTHER, K. F.; NOMAN, M.; WANG, F. W.; LI, X. W.; LI, H. Y. (2019). Adaptation of Plants to Salt Stress: characterization of Na+ and K+ transporters and Role of CBL gene family in regulating salt stress response. Agronomy, v.9, n. 687, p. 1-32, 2019. https://doi.org/10.3390/agronomy9110687.

LIANG, G.; ZHANG, Z. (2020). Reducing the nitrate content in vegetables through joint regulation of short-distance distribution and long-distance transport. Frontiers in Plant Science. v.11 p., 1079, 2020. https://doi.org/10.3389/fpls.2020.01079.

MACHADO, L. C.; PAIVA, R. C.; SOUSA, J. D. C. M. D.; COSTA, T. C.; MARTINS, J. T. D. S.; NASCIMENTO, V. R. D.; OLIVEIRA NETO, C. F. D. Path analysis of the influence of cadmium on mahogany. Ciência Florestal, v.34, e73800, 2024.https://doi.org/10.5902/1980509873800.

PEOPLES, M. B.; FAIZAH, A. W.; RERKASEM, B.; HERRIDGE, D. F. Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research. v.1, n.118041, p. 1-81, 1989. https://doi.org/10.22004/ag.econ.118041.

RATKE, R. F.; AGUILERA, J. G.; ZUFFO, A. M.; BAIO, F. H. R.; TEODORO, P. E.; YOKOTA, L. A.; OLIVEIRA, J. T. D. Spatial dependence of soybean cultivation, in a lowcarbon production system, integrated with eucalyptus forest. Ciência Florestal, 34(3), e73889, 2024.https://doi.org/10.5902/1980509873889.

SARRUGE, J. R. Soluções nutritivas. Summa Phytopathologica, Botucatu. v.1, n.3, p. 231-233, 1975. ISSN: 1980-5454. ISSN: 0100-5405.

SÉRVULO, A. C.; VELLAME, L. M.; CASAROLI, D.; ALVES, J.; SOUZA, P. H. D. African Mahogany transpiration with granier method and water table lysimeter. Revista Brasileira de Engenharia Agrícola e Ambiental. v.21, n.5, p. 322-326, 2017. http://dx.doi.org/10.1590/1807-1929/agriambi.v21n5p322-326.

SHAH, F. R.; AHMAD, N.; MASOOD, K. R.; ZAHID, D. M. The influence of Cd and Cr on the biomass production of Shisham (Dalbergia sissoo Roxb.) seedlings. Pakistan Journal of Botany. v.40, n.4, p. 1341-1348, 2008. https://doi.org/10.1.1.627.8061&rep=rep1&type=pdf.

SHARMA, A.; SHAHZAD, B.; KUMAR, V.; KOHLI, S. K.; SIDHU, G. P. S.; BALI, A. S.; ZHENG, B. Review Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. v.9, n.285, p. 1-32, 2019. https://doi.org/10.3390/biom9070285.

SHI, W.; ZHANG, Y.; CHEN, S.; POLLE, A.; RENNENBERG, H.; LUO, Z. B. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell & Environment. p. 1-17, 2019. https://doi.org/10.1111/pce.13471.

TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 5ª. ed. Porto Alegre: Artmed, 918, 2013 ISBN: 8536327952.

USMAN, K.; AL-GHOUTI, M. A.; ABU-DIEYEH, M. H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Scientific Reports. v.9, n.5658, p. 1-11,2019. https://doi.org/10.1038/s41598-019-42029-9.

WEATHERBURN, M. W. Phenol hipochlorite reaction for determination of ammonia. Analytical Chemistry. v.39, n.8, p. 971-974,1967. https://doi.org/10.1021/ac60252a045.

##submission.downloads##

Pubblicato

2025-07-31

Come citare

Machado, L. C., Paiva, R. C., Amarante, C. B. do, Oliveira, J. T. de, Cunha, F. F. da, Silva, P. A., & Oliveira Neto, C. F. de. (2025). Nitrogen metabolism in young plants of African mahogany submitted to different concentrations of cadmium. Ciência Florestal, 35, e89275. https://doi.org/10.5902/1980509889275

Fascicolo

Sezione

Artigos

Puoi leggere altri articoli dello stesso autore/i

Articoli simili

Puoi anche Iniziare una ricerca avanzata di similarità per questo articolo.