Spatial depeSpatial dependence of soybean cultivation, in a low-carbon production system, integrated with eucalyptus forestndence of soybean from eucalyptus forest
DOI:
https://doi.org/10.5902/1980509873889Parole chiave:
Canonical Variables, Glycine max (L.) Merrill, Multispectral, Remotely Piloted Aircraft, Vegetation IndexAbstract
In a climate change scenario, a producer who decides to invest in a Crop-Forest integration system, instead of investing in conventional production, benefits. The objective the present work, which is a low carbon emission agriculture model, aimed to evaluate the effect of shading and the spatial dependence of soybean crop indices in integration with eucalyptus forest. The design adopted was that of randomized blocks with six replications and treatments composed of different horizontal distances about eucalyptus (30, 34, 38, 42 and 46 m), in two distinct areas, one with the presence of eucalyptus forest in the north and west phase and another one without the presence of eucalyptus in the northern part of the soybean cultivation area. Evaluated the photosynthetically active photons at four different times, the plant stand, plant height, and the vegetation index after 30 and 60 days of germination and finally the mass of a thousand grains and productivity. As a result, all attributes showed spatial dependence, except soybean productivity. As final considerations, the spacing of 34 m between the eucalyptus trees promote less shading. The highest average grain production in the area was found in the presence of eucalyptus on the west and north sides of the cultivation area.
Downloads
Riferimenti bibliografici
BHERING, L. L. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology. v. 17, p. 187–190. 2017. https://doi.org/10.1590/1984-70332017v17n2s29
BONINI, I. et al. Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. Forest Ecology and Management. v. 414, p. 64-73. 2018. https://doi.org/10.1016/j.foreco.2018.01.038
CARNEIRO, F. M. et al. Correlations among vegetation indices and peanut traits during differente crop development stages. Engenharia Agrícola. v. 39, p. 33–40. 2019. https://doi.org/10.1590/1809-4430-Eng.Agric.v39nep33-40/2019
CARON, B. O. et al. Dynamics of solar radiation and soybean yield in agroforestry systems. Anais da Academia Brasileira Ciência. v. 90, n. 4 p. 3799–3812. 2018. https://doi.org/10.1590/0001-3765201820180282
CASSEL, J. L. et al. Ação da auxina sobre plantas de soja. Brazilian Journal of Animal and Environmental Research. v. 4, n. 3, p. 4628-4643. 2021. https://doi.org/10.34188/bjaerv4n3-142
CHENG, B. et al. Shade-Tolerant Soybean Reduces Yield Loss by Regulating Its Canopy Structure and Stem Characteristics in the Maize–Soybean Strip Intercropping System. Frontiers in Plant Science. 13, e848893. 2022. https://doi.org/10.3389/fpls.2022.848893
FARIAS NETO, A. L. et al. Sombreamento de soja e milho em sistemas de produção ILPF no norte de Mato Grosso. Embrapa Agrossilvipastoril-Capítulo em livro científico (ALICE). 2019. https://www.alice.cnptia.embrapa.br/alice/handle/doc/1103806
HELLVIG, E. L. F.; FLORES-SAHAGUN, T. H. S. Políticas públicas para o setor primário alinhadas à baixa emissão de carbono: mapeamento e territorialização dos arranjos produtivos locais de São José dos Pinhais. Revista Econômica do Nordeste, v. 54, n. 3, p. 68-77. 2023. https://g20mais20.bnb.gov.br/revista/ren/article/view/1392/1132
OLIVEIRA, J. T. et al. Spatial correlation between the chemical attributes of a red latosol and the grain yield of common bean. Revista Engenharia na Agricultura-REVENG. v. 28, p. 425-434. 2020. https://doi.org/10.13083/reveng.v29i1.9979
PENG, X. et al. Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercropping systems in southern Ontario, Canada. PLoS One. 10, e0129467. 2015. https://doi.org/10.1371/journal.pone.0129467
PEREIRA, N. A.; MEDEIROS, J. C.; LACERDA, J. D. J.; ROSA, J. D.; DIAS, B. A. S.; SILVA, E. M.; MENDES, W. D. S. Soil Physical Attributes Under Eucalyptus stands With Non-living and Living Plants. Journal of Agricultural Science. v. 11, n. 3, p. 1-11. 2019. https://doi.org/10.5539/jas.v11n3p197
RODRIGUES, L. C. et al. Variabilidade espacial dos componentes produtivos da cultura da soja. Agrarian, Dourados, v. 16, n. 56, e16682, 2023. DOI: https://doi.org/10.30612/agrarian.v16i56.16682
SAKAMOTO, T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal of Photogrammetry and Remote Sensing. v. 160, p. 208-228. 2020. https://doi.org/10.1016/j.isprsjprs.2019.12.012
SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, p. 355, 2018. ISBN: 978-85-7035-817-2
SOUZA, F. H. Q. et al. The use of vegetation index via remote sensing allows estimation of soybean application rate. Remote Sensing Applications: Society and Environment. 17, e100279. 2020. https://doi.org/10.1016/j.rsase.2019.100279
SOUZA RANGEL, P. H. et al. Qualidade da aplicação na cultura da soja em sistema integração lavoura-floresta e monocultura. Brazilian Journal of Development. v. 6, n. 11, p. 84299-84311. 2020. https://doi.org/10.34117/bjdv6n11-006
SOUZA, A. D. et al. Climate regionalization in Mato Grosso do Sul: a combination of hierarchical and non-hierarchical clustering analyses based on precipitation and temperature. Brazilian Archives of Biology and Technology, 65, e22210331. 2022. https://doi.org/10.1590/1678-4324-2022210331
TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. Rio de Janeiro, Embrapa. 573 p. 2017. 2017. ISBN 978-85-7035-771-7
VIEIRA, C. C.; CHEN, P. The numbers game of soybean breeding in the United States. Crop Breeding and Applied Biotechnology. 21, e387521. 2021. https://doi.org/10.1590/1984-70332021v21Sa23
WEN, B. X. et al. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress. Journal of Integrative Agriculture. v. 19, n. 10, p. 2439–2450. 2020. http://dx.doi.org/10.1016/S2095-3119(20)63159-8
WERNER, F. et al. Agronomic performance of soybean cultivars in an agroforestry system. Pesquisa Agropecuária Tropical. v. 47, n. 3, p. 279–285. 2017. https://doi.org/10.1590/1983-40632016v4745937
WRI, Brasil. Uma Nova Economia para uma Nova Era: Elementos para a Construção de uma Economia Mais Eficiente e Resiliente para o Brasil. Ed.1 104p. Available from: https://wribrasil.org.br/pt/publicacoes/nova-economia-brasil-eficiente-resiliente-retomada-verde. Accessed in: 2nd Oct. 2023.
ZOU, Z. et al. Emergy and Economic Evaluation of Seven Typical Agroforestry Planting Patterns in the Karst Region of Southwest China. Forests. 10, e138. 2019. https://doi.org/10.3390/f10020138
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2024 Ciência Florestal
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.