Vibration and operational performance of a brushcutter operating with three cutting discs
DOI:
https://doi.org/10.5902/1980509889906Keywords:
Brushcutter, Occupational health, Ergonomics, Exhibition, WorkersAbstract
Second Side motor brushcutters are widely used in urban cleaning activities. However, in rural areas they are used in the management of orchards and pastures, as well as in clearing the forest understory. In this sense, the present study aimed to identify and quantify the different levels of vibration spread to the hands and arms system, in the different orthogonal axes, during the operation of a motor brush cutter equipped with different cutting discs. The work consisted of clearing the understory vegetation using a side motor brushcutter, equipped with three cutting discs (D1; D2 and D3). Vibrations in hands and arms were measured in the three orthogonal axes, as recommended by ISO 5349-1 (2001). From the results obtained, it was found that the D3 disc was the one that presented the highest values of vibrations in hands and arms, with the highest vibrations being measured in the right-hand grip, and in the orthogonal Z direction. Therefore, the operation of Brushcutter requires the use of mandatory PPE such as anti-vibration gloves to mitigate harmful effects on the operator.
Downloads
References
ALBIZU-URIONABARRENETXEA, P.; TOLOSANA-ESTEBAN, E.; ROMAN-JORDAN, E. Safety and Health in Forest Harvesting Operations. Diagnosis and Preventive Actions. A Review. Forest Systems, n.22, p. 392–400, 2013. DOI: https://doi.org/10.5424/fs/2013223-02714
ALTUNTAŞ, M.; ÇELIK, A. Analysis of Brush Cutter-Related Accidents: describing an extraordinary kind of agricultural injury. The Journal of Emergency Medicine, [S.L.], n. 62, v. 1, p. 9-15, 2022. DOI: https://doi.org/10.1016/j.jemermed.2021.07.056
BARBOSA, V. H. B. et al. Avaliação dos níveis de vibração e ruído nas operações de roçada e desgalhamento com motopodas. Tópicos em gestão da produção. Ed. Poisson, Belo Horizonte, n. 4, p.120-127, 2017.
BERNARDI, B. et al. Occupational risks related to vibrations using a brush cutter for green area management. Annals of Agricultural and Environmental Medicine, n.25, v.2, p.255-258, 2018. DOI: https://doi.org/10.26444/aaem/75684
BRASIL. Ministério do Trabalho e Emprego. NR 15 - Norma Regulamentadora N° 15: atividades e operações insalubres. Anexo N° 8 vibrações. p. 60.
ÇAKMAK, B.; SARAÇOĞLU, T.; ALAYUNT, F.N.; ÖZARSLAN, C. Vibration and noise characteristics of flap type olive harvesters. Applied Ergonomics, n. 42, v. 3, p. 397-402, 2011. DOI: https://doi.org/10.1016/j.apergo.2010.08.015
CARRA, S.; MONICA, L.; VIGNALI, G. Reduction of workers’ hand-arm vibration exposure through optimal machine design: AHP methodology applied to a case study. Safety Science, n.120, p.706-727, 2019. DOI: https://doi.org/10.1016/j.ssci.2019.07.034
CARVALHO, P. E. R. Espécies Arbóreas Brasileiras: Embrapa Informação Tecnológica. Colombo, PR: Embrapa Florestas, v. 1, 1.039p., 2003. ISBN 85-7383-167-7.
CASANOVA, V.; HAMILTON, J. Produtos Florestais Não Madeireiros no Sudeste dos Estados Unidos: Implicações para a Segurança e Saúde do Trabalhador. J Agromedicina, v. 24, n.2, p.121–124, 2019.
CELLA, M. C. et al. Hand-arm vibration while operating a side brush cutter with three cutting implements in two crops. Engenharia na Agricultura, v. 30, p. 294 - 302, 2022. DOI: https://doi.org/10.13083/reveng.v30i1.14115
DA SILVA, E. F.C. et al. Perfil dos operadores de motorroçadoras, o cenário na região central do RS. Observatório de La Economía Latinoamericana, v. 21, p. 21627-21646, 2023. DOI: https://doi.org/10.55905/oelv21n11-165
DABABNEH, A. J.; SWANSON, N.; SHELL, R. L. Impact of added rest breaks on the productivity and well being of workers. Ergonomics, p. 164 - 174, 2001. DOI: https://doi.org/10.1080/00140130121538
Directiva Europeia n.º 2002/44/CE, de 25 de junho riscos devidos aos agentes físicos vibrações (décima sexta diretiva especial na acepção nº 1 do artigo 16º da Directiva 89/391/CEE).
FELIPPE, B. M. et al. Análises diretivas para o processo de gestão da arborização de calçadas em São Pedro do Sul, RS. Ciência Florestal, Santa Maria, v. 32, n. 4, p. 2035-2056, 2022. DOI: https://doi.org/10.5902/1980509866158
FERREIRA, D. F. SISVAR: Um sistema de análise computadorizada para projetos do tipo split plot de efeitos fixos. Revista Brasileira de Biometria, v. 37, n. 4, p. 529–535, 2019. DOI: https://doi.org/10.28951/rbb.v37i4.450
FUNDACENTRO - Fundação Jorge Duprat Figueiredo De Segurança E Medicina Do Trabalho. Norma de Higiene Ocupacional – Procedimento técnico. Avaliação da exposição ocupacional a vibrações em mãos e braços. NHO10. São Paulo, 2013. 53p.
GOMES, H. M.; SAVIONEK, D., Measurement and evaluation of human exposure to vibration transmitted to hand-arm system during leisure cyclist activity. Revista Brasileira de Engenharia Biomédica, v. 30, n.4, p. 291-300, 2014. DOI: https://doi.org/10.1590/1517-3151.0546
GRIFFIN, M. J. Fundamentals of noise and vibration. Fundamentals of human response to vibration. CRC Press, p.179-223, 1998. ISBN 9780203477410.
HAO, K. Y.; RIPIN, Z. M. Nodal control of grass trimmer handle vibration. International Journal of Industrial Ergonomics, v. 43, n. 1, p.18-30, 2013. DOI: https://doi.org/10.1016/j.ergon.2012.10.007
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 2631: Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements. 1997.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 5349-1 2001: Mechanical vibration – Measurement and evaluation of human exposure to hand-transmitted vibration – Part 1: General requirements. 2001.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 5349-2 2001: Mechanical vibration – Measurement and evaluation of human exposure to hand-transmitted vibration – Part 2: Practical guidance for measurement at the workplace. 2001.
KOVÁČ, J.; KRILEK, J.; DADO, M.; BENO, P. Investigating the Influence of Design Factors on Noise and Vibrations in the case of Chainsaws for Forestry Work. FME Transactions, n. 46, 2018. DOI: https://doi.org/10.5937/fmet1804513K
NASKRENT, B. et al. Influence of Cutting Attachment on Noise Level Emitted by Brush Cutter during Tending of Young Forests. Croatian Journal of Forest Engineering, v.41, n.1, p.129-135, 2020. DOI: https://doi.org/10.5552/crojfe.2020.657
NERI, F. et al. A Comparison between the Latest Models of Li-Ion Batteries and Petrol Chainsaws Assessing Noise and Vibration Exposure in Cross-Cutting. Forests, v.14, p.898, 2023. DOI: https://doi.org/10.3390/f14050898
NERI, F. et al. Determining Noise and Vibration Exposure in Conifer Cross-Cutting Operations by Using Li-Ion Batteries and Electric Chainsaws. Forests, v. 9, n. 8, p. 501, 2018. DOI: https://doi.org/10.3390/f9080501
OLIVEIRA JÚNIOR, G. G. et al. Occupational Exposure To Localized Vibrations Using Portable Mechanical Brush Cutter in Coffee Crop. Coffee Science, v. 14, n. 2, p. 183 – 192, 2019. DOI: https://doi.org/10.25186/cs.v14i2.1569
OTTONELLI, J. et al. Estado de uso e conservação de motosserras com motores de combustão interna. Tecno-Lógica, v.24, p. 196–201, 2020. DOI: https://doi.org/10.17058/tecnolog.v24i2.14543
PINTO, I. et al. Protection effectiveness of antivibration gloves: Field evaluation and laboratory performance assessment. Paper presented to the 9th international conference on hand-arm vibration, p. 1-12, 2001.
POLETTO FILHO, J. A.; SANTOS, J. E. G.; POLLETO, H. M.C. Análise dos riscos físicos e ergonômicos em roçadora transversal motorizada. Revista Brasileira de Ergonomia, v.10, n.1, p.70-81, 2015.
ROGGIO, F. et al. Ergonomic evaluation of young agricultural operators using handle equipment through electromyography and vibrations analysis between the fingers. Safety and health at work, v.13, n.4, p.440-447, 2022. DOI: https://doi.org/10.1016/j.shaw.2022.07.003
ROTTENSTEINER, C., STAMPFER, K. Evaluation of operator vibration exposure to chainsaws equipped with a kesper safety bar. Scandinavian journal of forest research, v. 28, n 2, 2013. DOI: https://doi.org/10.1080/02827581.2012.706636
SALIBA, T. M.; CORREA, M. A. C.; AMARAL L. S.Higiene do trabalho: Programa de prevenção de riscos ambientais. 3. Ed. São Paulo, p. 262; 2002. ISBN: 9788536101910.
SCHUTZER, V. M. Avaliação de parâmetros ergonômicos: vibração e ruído em roçadoras laterais. 2018. 107 p. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Estadual Paulista, Bauru - SP, 2018.
SELL, I. Projeto do trabalho humano: Melhorando as condições de trabalho. Florianópolis, Ed. EdUFSC, p. 470, UFSC, 2002.
TALAGAI, N.; BORZ, S.A.; IGNEA, G. Performance of brush cutters in felling operations of willow short rotation coppice. Bioresources, n. 12, p. 3560–3569, 2017. DOI: https://doi.org/10.15376/biores.12.2.3560-3569
UEMURA, M. et al. Vibration reduction of brush cutter considering human response characteristic. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, p. 2210-2218, 2014.
VEIGA, R. K.; GONTIJO, L. A.; MASIERO, F. C.; VENTURI, J. Análise e distribuição espacial do ruído no posto de trabalho do operador e nas proximidades de máquinas agrícolas e florestais. Ciência Florestal, Santa Maria, v. 31, n. 1, p. 43-65, 2021. DOI: https://doi.org/10.5902/1980509816116
YANG, W. et al. Muscle fatigue related to human posture using a brush cutter for landscape gardening: a preliminary study. Medycyna Pracy, v.73, n. 3, p. 201-207, 2022. DOI: https://doi.org/10.13075/mp.5893.01175
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência Florestal

This work is licensed under a Creative Commons Attribution 4.0 International License.
A revista CIÊNCIA FLORESTAL reserva-se o direito de realizar, nos originais, alterações de ordens normativas, ortográficas e gramaticais, com vistas a manter o padrão escolar da língua, mas respeitando o estilo dos autores. As provas finais podem ou não ser enviadas aos autores.


