Histomorphological and biochemical characterization of callus induction in <i>Cenostigma pyramidale</i> [Tul.] Gagnon & G.P. Lewis

Authors

DOI:

https://doi.org/10.5902/1980509866334

Keywords:

In vitro cultivation, Growth curve, Carbohydrates

Abstract

Cenostigma pyramidale [Tul.] has timber, forage and medicinal uses, and due to the exploitation of its natural resources, it may become endangered. This work aimed to induce callus in Cenostigma pyramidale and to identify the embryogenic potential by histomorphological and biochemical analysis. Leaf segments were inoculated in MS culture medium containing different concentrations (0.0; 2.5; 5.0 and 10.0 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D), combined with 6-benzylaminopurine (BAP; 0.0; 2.5 and 5.0 μM) and glutamine (0.0; 0.342 and 0.684 mM). The growth curve was performed at 7-day intervals until day 77, and samples were collected for histomorphological analysis and determination of reducing sugars (RA), sucrose, and total soluble sugars (TSS) content. Callus induction is possible using leaf segments in treatment with 5.0 μM of BAP, 7.0 µM of 2.4-D and 0.684 mM of glutamine. The growth curve shows sigmoidal behavior with five distinct phases: lag, exponential, linear, deceleration and decline. It was verified the presence of cells with meristematic characteristics from the 7th day of induction, suggesting that the calli have embryogenic potential. However, differentiation of somatic embryos was not observed. There was a reduction in RA content and increase in AST and sucrose during the lag phase and beginning of the exponential phase, followed by degradation in the exponential phase until the decline phase, showing the involvement of these carbohydrates with callus growth. These results are unprecedented for the species and suggest future studies related to callus maturation aiming the differentiation of somatic embryos.

Downloads

Download data is not yet available.

Author Biographies

Rosembrando Sosthenes Leite Carvalho Filho, State University of Feira de Santana

 Me., Doutorando
Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brasil.

Tecla dos Santos Silva, State University of Feira de Santana

 Dra., Professora
Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brasil.

Yrexam Rodrigues de Souza Ribeiro, Universidade Estadual do Norte Fluminense

 Dra.
Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil.

Claudete Santa-Catarina, Universidade Estadual do Norte Fluminense

 Dra., Professora
Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil.

José Raniere Ferreira de Santana, State University of Feira de Santana

 Dr., Professor
Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brasil.

References

ALVES, I. S. et al. 2- Isopentenyladenine in the induction of direct somatic embryogenesis capacity of coffea arabica L. Ciencia Rural, v. 48, n. 11, p. 1–5, 2018. DOI: https://doi.org/10.1590/0103-8478cr20180001

BARTOS, P.M.C. et al. Biochemical events during somatic embryogenesis in Coffea arabica L.. 3 Biotech 8, 209, 2018. DOI: https://doi.org/10.1007/s13205-018-1238-7

CAMPANONI, P.; NICK, P. Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology, v. 137, p. 939–948, 2005. DOI: https://doi.org/10.1104/pp.104.053843

CAMPOS, J. M. S. et al. Embriogênese somática em híbridos de Pennisetum sp. e avaliação de estabilidade genômica por citometria. Pesquisa Agropecuaria Brasileira, v. 44, n. 1, p. 38–44, 2009. DOI: https://doi.org/10.1590/S0100-204X2009000100006

CARNEIRO, F. S. et al. Embriogênese somática em Agave sisalana Perrine : indução , caracterização anatômica e regeneração. Pesquisa Agropecuária Tropical, v. 2014, p. 294–303, 2014. DOI: https://doi.org/10.1590/S1983-40632014000300005

CARNEROS, E. et al. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue and Organ Culture, v. 98, n. 2, p. 165–178, 2009. DOI: https://doi.org/10.1007/s11240-009-9549-3

COPELAND, K. K. P. G. et al. In vitro callogenesis of Poincianella pyramidalis (catingueira). Revista Brasileira de Farmacognosia, v. 27, n. 4, p. 525–528, 2017. DOI: https://doi.org/10.1016/j.bjp.2016.12.005

EVELAND, A. L.; JACKSON, D. P. Sugars, signalling, and plant development. Journal of Experimental Botany, v. 63, n. 9, p. 3367–3377, 2011. DOI: https://doi.org/10.1093/jxb/err379

FEITOSA, L. S. et al. Indução e análise histológica de calos em explantes foliares de Jatropha curcas L. (Euphorbiaceae). Bioscience Journal, v. 29, n. 2, p. 370–377, 2013.

GEORGE, E. F. Plant Tissue Culture Procedure – Background. In: E.F George, M.A Hall & G-J Klerk (eds), Plant Propagation by Tissue Culture: the background. v. 1. 3.ed., Springer, Dordrecht, p. 2–28, 2008. DOI: https://doi.org/10.1007/978-1-4020-5005-3_1

GRANDO, M. F. et al. Pendão imaturo como explante alternativo na embriogênese somática e regeneração de plantas em genótipos sul brasileiros de milho. Acta Scientiarum - Agronomy, v. 35, n. 1, p. 39–47, 2013.

HAZUBSKA-PRZYBYL, T. et al. Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, v. 38, n. 59, p.14, 2016. DOI: https://doi.org/10.1007/s11738-016-2078-x

HERINGER, A. S. et al. Polyethylene glycol effects on somatic embryogenesis of papaya hybrid UENF/CALIMAN 01 seeds. Theoretical and Experimental Plant Physiology, v. 25, n. 2, p.116-124, 2013. DOI: https://doi.org/10.1590/S2197-00252013000200004

KHAN, T et al. Production of biomass and useful compounds through elicitation in adventitious root cultures of Fagonia indica. Industrial Crops & Products, v. 108, p. 451–457, 2018. DOI: https://doi.org/10.1016/j.indcrop.2017.07.019

LINO, L. S. M. et al. Cell suspension culture and plant regeneration of a Brazilian plantain, cultivar Terra. Pesquisa Agropecuária Brasileira, v.43, n.10, p.1325-1330, 2008. DOI: https://doi.org/10.1590/S0100-204X2008001000010

LOPES, C. A. et al. Indução de calos, potencial embriogênico e estabilidade genética em pitaia vermelha. Revista Brasileirade Ciencias Agrarias, v. 11, n. 1, p. 21–25, 2016. DOI: https://doi.org/10.5039/agraria.v11i1a5355

LLOYD, G; MCCOWN, B. Use of microculture for production and improvement of Rhododendron spp. Horticultural Science, Alexandria. v. 15, p. 415. 1980.

MACIEL, S. A. et al. Caracterização morfoanatômica de calos embriogênicos originados de embriões zigóticos imaturos de pupunheira durante a embriogênese somática. Acta Scientiarum - Agronomy, v. 32, n. 2, p. 263–267, 2010.

MAIA, G. N. Caatinga: árvores e arbustos e suas utilidades. 2.ed. Printcolor Gráfica e Editora, Fortaleza, 2012. 413 p.

MILLER, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, v. 31, n. 3, p. 426–428, 1959. DOI: https://doi.org/10.1021/ac60147a030

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, v. 15, p. 473-497, 1962. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

NOGUEIRA, R. C. et al. Calli induction from leaf explants of murici-pequeno (Byrsonima intermedia A. Juss.). Ciencia e Agrotecnologia, v. 31, n. 2, p. 366–370, 2007. DOI: https://doi.org/10.1590/S1413-70542007000200015

NORDSTRÖM, A. et al. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin–cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America, v. 101, p. 8039-8044, 2004. DOI: https://doi.org/10.1073/pnas.0402504101

PAN, Y. et al. Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb.f. using a callus suspension culture. PLoS ONE, v.15, n.2, 2020. DOI: https://doi.org/10.1371/journal.pone.0220084

RAI, M. K. et al. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture, v. 106, n. 2, p. 179-190, 2011. DOI: https://doi.org/10.1007/s11240-011-9923-9

REIS, A. et al. Callus induction and betacyanin quantification by HPLC / MS-MS in Alternanthera brasiliana (L.) Kuntze. Hoehnea, v. 44, n. 1, p. 90–95, 2017. DOI: https://doi.org/10.1590/2236-8906-75/2016

RODRIGUES, F. R. et al. In vitro callus induction and development of Vernonia condensata baker with embryogenic potential. Ciencia e Agrotecnologia, v. 44, e026719, 2020. DOI: https://doi.org/10.1590/1413-7054202044026719

SANTOS, C. G. et al. Indução e análise bioquímica de calos em segmentos foliares e nodais de Coffea canephora L. cv. Apoatã. Magistra, v. 20, n. 1, p. 22-29, 2008.

SANTOS, D. N. et al. Análise bioquímica de calos de pinhão-manso. Revista Ciência Rural, v. 40, n. 11, p. 2268-2273, 2010. DOI: https://doi.org/10.1590/S0103-84782010001100004

SANTOS, M. R. A. et al. Callus induction in leaf explants of Cissus verticillata (L.) Nicolson & c. E. Jarvis. Plant Cell Culture & Micropropagation, v.10, n.2, p. 41-46, 2014.

SANTOS, M. R. A. et al. Induction and growth pattern of callus from Piper permucronatum leaves. Revista Brasileira de Plantas Medicinais, v. 18, n. 1, p. 142–148, 2016. DOI: https://doi.org/10.1590/1983-084X/15_098

SANTOS, M. R. A.; SOUZA, C. A.; PAZ, E. S. Growth pattern of friable calluses from leaves of Capsicum annuum var. annuum cv. Iberaba Jalapeño. Revista Ciencia Agronomica, v. 48, n. 3, p. 523–530, 2017. DOI: https://doi.org/10.5935/1806-6690.20170061

SHARMA, S. K.; BRYAN, G. J.; MILLAM, S. Auxin pulse treatment holds the potential to enhance efficiency and practicability of somatic embryogenesis in potato. Plant Cell Reports, v. 26, n. 7, p. 945–950, 2007. DOI: https://doi.org/10.1007/s00299-007-0319-6

SILVA, T. S. et al. Calogênese em Myracrodruon urundeuva Fr. All. Ciência Florestal, v. 30, n. 3, p. 700-717, 2020. DOI: https://doi.org/10.5902/1980509831689

SILVEIRA, V. et al. Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell, Tissue and Organ Culture, v. 114, n. 3, p. 351–364, 2013. DOI: https://doi.org/10.1007/s11240-013-0330-2

SMERTENKO, A.; BOZHKOV, P. V. Somatic embryogenesis: Life and death processes during apical-basal patterning. Journal of Experimental Botany, v. 65, n. 5, p. 1343–1360, 2014. DOI: https://doi.org/10.1093/jxb/eru005

SMITH, R.M. Plant tissue culture: techniques and experiments. 1. ed. San Diego: Academic Press, 1992. 171p.

SMITH, A. M.; ZEEMAN, S. C.; SMITH, S. M. Starch degradation. Annual Review Plant Biology, v. 56, p. 73-98. 2005. DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144257

STEIN, V. C. et al. Curva de crescimento e índice de divisão celular de calos de Ingazeiro. Revista de Ciências Agrárias, v. 53, n. 2, p. 159–163, 2010. DOI: https://doi.org/10.4322/rca.2011.022

VILELA, M. S. P. et al. Histological analysis of indirect somatic embryogenesis induced from root explats of oil palm (Elaeis guineensis jacq). Revista Arvore, v. 43, n. 1, p. 1–10, 2019. DOI: https://doi.org/10.1590/1806-90882019000100006

YEMM, E. W.; WILLIS, A. J. The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal, v. 57, p. 508-514, 1954. DOI: https://doi.org/10.1042/bj0570508

Published

2023-03-28

How to Cite

Carvalho Filho, R. S. L., Silva, T. dos S., Ribeiro, Y. R. de S., Santa-Catarina, C., & Santana, J. R. F. de. (2023). Histomorphological and biochemical characterization of callus induction in <i>Cenostigma pyramidale</i> [Tul.] Gagnon & G.P. Lewis. Ciência Florestal, 33(1), e66334. https://doi.org/10.5902/1980509866334

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.