Seasonality effects on the phenology and physiology of <i>Parkia platycephala</i> Benth (Fabaceae, Caesalpinioideae) in Cerrado
DOI:
https://doi.org/10.5902/1980509839111Keywords:
Faveira, Abiotic stress, Plant metabolismAbstract
Plant species have developed a great number of mechanisms to maintain their reproduction and defend themselves during stressful conditions. Both primary and secondary metabolisms are affected by environmental changes at different stages of plant development. Thus, it is important to know plant defense and resistance mechanisms to environmental variations adapted to different environmental conditions. Parkia platycephala is an endemic species to Brazil and has several potential uses for pharmacological, forage, wood, ornamental and ecological purposes. Herein, we analyzed the relationship between climatic seasonality, phenology and physiology of Parkia platycephala. The study was carried out in a Cerrado sensu stricto area located in the region of Serra da Bandeira (12º05'S and 45º02'W), Barreiras, Bahia, Brazil. The phenological phases of Parkia platycephala were observed monthly following the methodology of Fournier. Leaves from the same individuals selected for phenological evaluations were sampled for physiological analyzes and the photosynthetic pigments, total phenol content, antioxidant activity, total soluble sugars (TSS), reducing sugars (RS) and non-reducing sugar (NRS) were quantified. Parkia platycephala presented a seasonal semi-deciduous vegetative pattern and annual reproductive pattern. The low water availability was the main environmental driver which most affected the physiological processes, reducing chlorophyll a and carotenoid production and promoting an increase in chlorophyll b, total phenol and non-structural soluble carbohydrate production. The non-enzymatic antioxidant activity in Parkia platycephala was high, presenting 3.7-times higher values than ascorbic acid (Vitamin C). Thus, this species presents effective mechanisms to maintain its active physiological processes, supporting droughts and intense sunshine throughout the year; however, its carbohydrate production is negatively affected by environmental shifts, thereby reflecting their phenophases, specifically on the reproductive phenophase.
Downloads
References
BLOIS, M. S. Antioxidant determinations by the use of a stable free radical. Nature, [s. l.], v. 181, p. 1199-1200, abr. 1958.
BRUM, C. N. F. et al. Modifications in the metabolism of carbohydrates in, (Coffea arabica L. cv. siriema) seedlings under drought conditions. Coffee Science, Lavras, v. 8, n. 2, p. 140-147, abr./jun. 2013.
BULHÃO, C. F.; FIGUEIREDO, P. S. Fenologia de leguminosas arbóreas em uma área de cerrado marginal no nordeste do Maranhão. Revista Brasileira de Botânica, São Paulo, v. 25, n. 3, p. 361-369, set. 2002.
COSMULESCU, S.; TRANDAFIR, I. Seasonal variation of total phenols in leaves of walnut (Juglans regia L.). Journal of Medicinal Plants Research, [s. l.], v. 5, n. 19, p. 4938-4942, set. 2011.
DUBOIS, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, [s. l.], v. 28, n. 3, p. 350-356, mar. 1956.
FOURNIER, L. A. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba, San José, v. 24, n. 4, p. 422-423, out./dec. 1974.
GOUGH, C. M. et al. Phenological and temperature controls on the temporal non-structural carbohydrate dynamics of Populus grandidentata and Quercus rubra. Forests, [s. l.], v. 1, p. 65-81, mar. 2010.
GOULD, K. S. et al. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation. Environmental and Experimental Botany, [s. l.], v. 154, p. 11-12, out. 2018.
GRIFFITHS, C. A.; PAUL, M. J.; FOYER, C. H. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochimica et Biophysica Acta, [s. l.], v. 1857, n. 10, p. 1715–1725, out. 2016.
HOPKINS, H. C. F. Parkia: leguminosae: mimosoideae. Flora Neotrópica, New York, v. 43, n. 2, p. 1-123, out. 1986.
LENZA, E.; KLINK, C. A. Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF. Revista Brasileira de Botânica, São Paulo, v. 29, n. 4, p. 627-638, out./dez. 2006.
LI, L.; SHEEN, J. Dynamic and diverse sugar signaling. Current Opinion in Plant Biology, [s. l.], v. 33, p. 116–125, out. 2016.
LI, N. et al. Leaf non-structural carbohydrates regulated by plant functional groups and climate: Evidences from a tropical to cold-temperate forest transect. Ecological Indicators, [s. l.], v. 62, p. 22–31, mar. 2016.
LICHTHENTHALER, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, [s. l.], v. 148, p. 350-382, 1987.
LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Instituto Plantarum, 2002. 174 p.
MELO, H. F. D.; SOUZA, E. R. D.; CUNHA, J. C. Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 21, n. 4, p. 232-237, abr. 2017.
MORELLATO, L. P. C. et al. Linking plant phenology to conservation biology. Biological Conservation, [s. l.], v. 195, p. 60-72, mar. 2016.
NELSON, N. A photometric adaptation of Somogy method for determination of glucose. Journal Biology Chemistry, [s. l.], v. 135, n. 2, p. 136-75, fev. 1944.
NENADIS, N. et al. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. Journal of Photochemistry & Photobiology, [s. l.], v. 153, p. 435–444, dez. 2015.
NEWSTRON, L. E.; FRANKIE, G. W.; BAKER, H. G. A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica, [s. l.], v. 26, n. 2, p. 141-159, jun. 1994.
OZKUR, O. et al. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovate Desf. to drought. Environmental and Experimental Botany, Amsterdam, v. 66, n. 3, p. 487–492, set. 2009.
PEZZINI, F. F. et al. Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosystems, [s. l.], v. 148, n. 5, p. 965–974, fev. 2014.
RAMÍREZ, D. A. et al. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, [s. l.], v. 168, p. 202-209, mar. 2014.
REDDY, A. R; CHAITANYA, K. V.; VIVEKANANDAN, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, [s. l.], v. 161, n. 11, p. 1189-1202, nov. 2004.
ROESLER, R. et al. Atividade antioxidante de frutas do cerrado. Ciência e Tecnologia de Alimentos, Campinas, v. 27, n. 1, p. 53-60, jan./mar. 2007.
SATO, T. et al. Mg-dechelation of chlorophyll a by Stay-Green activates chlorophyll b degradation through expressing Non-Yellow Coloring 1 in Arabidopsis thaliana. Journal of Plant Physiology, [s. l.], v. 222, p. 94-102, mar. 2018.
SILVA, F. A. M. da; ASSAD, E. D.; EVANGELISTA, B. A. Caracterização climática do Bioma Cerrado. In: SANO, S. M.; ALMEIDA, S. P.; RIBEIRO, J. F. Cerrado: ecologia e flora. Planaltina: Embrapa Cerrados, 2008. v. 1, p. 69-88.
SOARES NETO, J. P.; BEZERRA, A. R. G; MOSCON, E. S. Probabilidade e análise decadal da precipitação pluvial da cidade de Barreiras-Bahia, Brasil. Revista Brasileira de Geografia Física, [s. l.], v. 6, n. 3, p. 470-477, set. 2013.
TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Editora Artmed, 2017. 858 p.
THE BRAZIL FLORA GROUP - BFG. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia, Rio de Janeiro, v. 66, n. 4, p. 1085-1113. 2015.


