Effect of fire retardants on the germination of tropical forest species
DOI:
https://doi.org/10.5902/1980509837161Keywords:
Forest seeds, Germination process, Phytotoxicity, Fire retardantsAbstract
The objective of this study was to evaluate the effect of different concentrations of fire retardants and water-retaining polymer on seed germination of tropical forest species Handroanthu simpetiginosus (ipê-rosa), Tabebuia roseoalba (ipê-branco), Enterolobium schomburgkii (faveira) and Schizolobium parahyba var. amazonicum (paricá). It is noteworthy that no comparisons were made between the products, as they have different commercial recommendations and chemical compositions. The seeds were submitted to solutions of three fire retardants in the following concentrations: i) Phos-Chek WD881® at 0.0; 0.1; 0.3; 0.6; 0.8 and 1.0 mL L-1; ii) Hold Fire® at 0.0; 0.7; 0.9; 1.1; 1.3 and 1.5 mL L-1; and iii) water-retaining polymer Nutrigel® at 0.0; 0.10; 0.25; 0.50; 0.75 and 1.0 g L-1. Four replicates of 100, 100, 30 and 25 seeds were evaluated for the aforementioned species, in a completely randomized design. The germination tests were conducted in germination chambers at 30°C and 12 hours of photoperiod for 14 days. It was evaluated: germination percentage, first germination count, germination speed index, average germination time and seedling vigor were evaluated. Phos-Chek WD881 reduced the germination speed of the ipês and the first germination count and number of normal seedlings of these species and paricá. Hold Fire influenced the germination percentage of ipê-rosa (maximum 97.0% in 1.1 mL L-1) and the germination speed of ipê-branco, but did not cause variations in seedlings vigor. The water-retaining polymer did not influence germination, but caused a 14.3% reduction of normal seedlings to paricá. In general, Phos-Chek WD881 can be phytotoxic to ipê-branco, ipê-rosa and paricá, when applied in concentrations ≥ 0.6 mL L-1; Hold Fire can promote the germination of ipê-branco and ipê-rosa, without effects for the other species; and the water-retainng polymer had no effect on the seed germination of the evaluated forest species.
Downloads
References
ANDRADE FILHO, V. S. et al. Distribuição espacial de queimadas e mortalidade em idosos em região da Amazônia Brasileira, 2001 - 2012.Ciência e Saúde Coletiva, Rio de Janeiro, v. 22, n. 1, p. 245-253, 2017.
BARREIRO, A. et al. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biology and Fertility Soils, Berlin, v. 52, p. 963-975, 2016.
BASANTA, M. R. et al. Biochemical properties of forest soils as affected by a fire retardant. Biology and Fertility of Soils, Berlin, v. 36, n. 5, p. 377-383, 2002.
BATISTA, A. C. et al. Avaliação da eficiência de um retardante de longa duração, à base de polifosfatoamônico, em queimas controladas em condições de laboratório. Scientia Forestalis, Piracicaba, v. 36, n. 79, p. 223-229, 2008.
BESAW, L. M. et al. Disturbance, resource pulses and invasion: short‐term shifts in competitive effects, not growth responses, favour exotic annuals. Journal of Applied Ecology, Oxford, v. 48, p. 998-1006, 2011.
BEWLEY, J. D.; BLACK, M. Seeds physiology of development and germination. New York: Plenum Press, 1994. 494 p.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, 2009. 399 p.
CANZIAN, W. P. et al. Diferentes concentrações de retardante de fogo em plantios de eucalipto. Nativa, Sinop, v. 4, n. 4, p. 195-198, 2016.
CARRASCHI, S. P. et al. Toxicidade aguda e risco ambiental de surfactantes agrícolas para o guaru Phalloceros caudimaculatus (Pices: Poecilidae). Journal of the Brazilian Society of Ecotoxicology, Itajaí, v. 7, n. 1, p. 27-32, 2012.
COUTO-VÁZQUEZ, A.; GARCÍA-MARCO, S.; GONZÁLEZ-PRIETO, S. J. Longterm effects of fire and three firefighting chemicals on a soil–plant system. International Journal of Wildland Fire, Roslyn, v. 20, n. 7, p. 856-865, 2011.
DAVIDE, A. C.; SILVA, E. A. A. da. Sementes florestais. In: DAVIDE, A. C.; SILVA, E. A. A. da (ed.). Produção de sementes e mudas de espécies florestais. Lavras: UFLA, 2008. 174 p.
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS et al. Water quality and fish health. Rome, 1993. 59 p. (EIFAC Technical Paper, n. 54).
HAMILTON, S. J.; BUHL, K. J. Toxicity of fire retardant chemicals and fire suppressant foams to aquatic species. In: POULTON, B. et al. Toxicity of fire retardant and foam suppressant chemicals to plant and animal communities. Boise: Interagency Fire Coordination Committee, 1997.
IBAMA. Coordenação de Avaliação Ambiental de Substâncias e Produtos Perigosos. Parecer técnico, n. 514/2018-COASP/CGASQ/DIQUA, 20 de junho de 2018. Em atendimento à solicitação efetuada pela Diretoria de Proteção Ambiental (DIPRO) para que a Diretoria de Qualidade Ambiental (DIQUA) se manifeste tecnicamente sobre o uso de retardantes de chamas aplicáveis no combate a incêndios florestais. Brasília, 2018. 15 p. Disponível em: https://www.ibama.gov.br/phocadownload/quimicos-e-biologicos/retardantes-de-chamas/2018-SEI_IBAMA-Parecer-Tecnico-5142018-COASP-CGASQ-DIQUA.pdf. Acesso em: 14 out. 2018.
LATHA, K.; KUMAR, S. S. Energy aware deforestation monitoring system. Australian Journal of Basic Applied Scienses, Perth, v. 10, n. 2, p. 283-289, 2016.
LIMA, D. C. de. et al. Volume de calda e concentração de retardantes do fogo em queimas controladas em área de eucalipto na transição Cerrado-Amazônia. Ciência Florestal, Santa Maria, v. 30, n. 1, p. 205-220, 2020a.
LIMA, D. C. de. et al. Comportamento do fogo em diferentes concentrações e tempos pós-aplicação de retardantes em plantação de eucalipto na transição Cerrado-Amazônia no Brasil. Ciências Agrárias, Lisboa, v. 43, n. 1, p. 109-123, 2020.
LIODAKIS, S. et al. Testing the fire retardancy of Greek minerals hydromagnesite and huntite on WUI forest species Phillyrea latifolia L. Thermochimica Acta, Amsterdam, v. 469, p. 43-51, 2008.
LIODAKIS, S. et al. Thermal analysis of Pinus sylvestris L. wood samples treated with a new gel–mineral mixture of short- and long-term fire retardants. Thermochimica Acta, Amsterdam, v. 568, p. 156-160, 2013.
LUNA, B. et al. Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area. International Journal of Wildland Fire, Roslyn, v. 16, n. 3, p. 349-359, 2007.
MACHADO FILHO, C. et al. Eficiência de um retardante de fogo de longa duração utilizado em incêndios florestais. Ciência Florestal, Santa Maria, v. 22, n. 2, p. 365-371, 2012.
MAGUIRE, J. D. Speed of germination aid in selection and evaluation for emergence and vigour. Crop Science, Madison, v. 2, p. 176-177, 1962.
MARSHALL, A.; WALLER, L.; LEKBERG, Y. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion. Ecological Applications, Tempe, v. 26, n. 4, p. 996-1002, 2016.
MICHALOPOULOS, C. et al. Impact of a long-term fire retardant (FireTrol 931) on the leaching of Ca, Mg and K from a Mediterranean forest loamy soil. Environmental Science and Pollution Research, Berlin, v. 23, n. 6, p. 5487-5494, 2016.
PAZDERU, K.; KOUDELA, M. Influence of hydrogel on germination of lettuce and onion seed at different moisture levels. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Brno, v. 61, n. 6, p. 1817-1822, 2013.
PLUCINSKI, M. P.; SULLIVAN, A. L.; HURLEY, R. J. A methodology for comparing the relative effectiveness of suppressant enhancers designed for the direct attack of wildfires. Fire Safety Journal, Oxford, v. 87, p. 71-79, 2017.
RAKOWSKA, J. et al. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires. Chemical Papers, Bratislava, v. 68, n. 6, p. 823-833, 2014.
SILVA FILHO, E. A. da. Relatório de biodegradação de produto inibidor de chama: Hold Fire. Vitória: Laboratório de Físico-Química UFES, 2017. 4 p.
SOARES, R. V.; BATISTA, A. C.; TETTO, A. F. Incêndios florestais: controle, efeitos e uso do fogo. 2. ed. Curitiba: UFPR, 2017. 255 p.
SOLER, M.; ÚBEDA, X. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a Mediterranean forest. Journal of Environmental Management, London, v. 206, p. 65-68, 2018.
SONG, U. et al. Effects of three fire-suppressant foams on the germination and physiological responses of plants. Environmental Management, New York, v. 54, p. 865-874, 2014.
STEPHENS, S. L. et al. Drought, tree Mortality, and wildfire in forests adapted to frequent fire. BioScience, Washington, v. 68, n. 2, p. 77-88, 2018.
TANG, H. et al. Application of chitin hydrogels for seed germination, seedling growth of rapeseed. Journal Plant Growth Regulation, Berlin, v. 33, p. 195-201, 2014.
U.S. FOREST SERVICE. Ecological risk assessment of wildland fire-fighting chemicals: long-term fire retardants. Bellevue, 2015. Disponível em: https://www.fs.fed.us/rm/fire/wfcs/documents/EcoRA-Retardants-PUBLIC-Dec2013-rev3_080614.pdf. Acesso em: 10 jan. 2019.
XIMENES, E. S. O. C. et al. Efeitos de retardantes de fogo sobre a emergência e crescimento inicial de Handroanthus ocrhaceus (Cham.) Mattos e Tabebuia rosealba (Ridl.) Sandwith. Ciência Florestal, Santa Maria, v. 31, n. 1, p. 367-392, 2021.