Lignin and stem flexibility in eucalyptus seedlings subjected to hardening

Authors

DOI:

https://doi.org/10.5902/1980509833047

Keywords:

Seedling hardening, Eucalyptus urophylla x Eucalyptus grandis, Seedling quality, Phytoregulator

Abstract

The objective of this work was to verify if hardening by stem bending and foliar spray of jasmonic acid (JA) induced lignification and if it altered the post-planting development. The experiment was initially conducted in a shade house following a completely randomized design with treatments as (T1) control; (T2) 2.0 μmol L-1 of JA; (T3) 4.0 μmol L-1 of JA; (T4) 6.0 μmol L-1 of JA; (T5) 8.0 μmol L-1 of JA; (T6) 20 stem bending; (T7) 40 stem bending and five replicates. At the end of the imposed treatments, we calculated the increments in height, stem diameter, number of leaves, root and shoot dry biomasses, as well as the lignin content of shoots and roots and the stem stiffness. Afterwards, seedlings were planted following a randomized block design with three seedlings per replicate. At 90 and 150 days after planting, we quantified increments in height and stem diameter. Treatments T5 and T6 showed higher bending strength (0.28885 and 0.3005 N cm-1, respectively). Seedlings submitted to doses above 6.0 μmol L-1 of JA (T5) and imposition of stem bending (T6 and T7) resulted in a higher stem lignin content. The smaller doses of JA (T2, T3 and T4) and 20 stem bending (T6) resulted in seedlings with a relative increase in diameter. The interpretation of path analysis showed weak multicollinearity, that is, the variables under study are not highly correlated and there was a greater direct correlation between the lignin content of the stem with the mean increase in height and diameter of the seedlings after planting.

Downloads

Download data is not yet available.

References

BHERING, S. B. et al. Mapa de solos do Estado do Paraná: escala 1:250.000: legenda. Rio de Janeiro: EMBRAPA Solos, 2007.

CADORIN, D. A. et al. Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. Cerne, Lavras, v. 21, n. 4, p. 657-664, 2015.

CARNEIRO, J. G. A. Produção e controle de qualidade de mudas florestais. Curitiba: UFPR; UENF; FUPEF, 1995. 415 p.

CARVALHO, A. M.; NAHUZ, M. A. R. Valorização da madeira do híbrido Eucalyptus grandis x Eucalyptus urophylla através da produção conjunta de madeira serrada em pequenas dimensões, celulose e lenha. ScientiaForestalis, Piracicaba, n. 59, p. 61-76, 2001.

CAVIGLIONE, J. H. et al. Cartas climáticas do Paraná. Londrina: IAPAR, 2000. CD-ROM.

CRUZ, C. D. Programa genes: aplicativo computacional em genética e estatística. Viçosa, MG: UFV, 2001. 648 p.

CRUZ, C. D. Programa genes: estatística experimental e matrizes. Viçosa, MG: UFV, 2006. 285 p.

DETMANN, E. et al. Métodos para análise de alimentos - INCT - Ciência animal. Visconde do Rio Branco: Suprema, 2012. 214 p.

DRANSKI, J. A. L. Tigmomorfogênese na rustificação e sobrevivência em mudas de Pinus taeda L. 2013. Tese (Doutorado em Agronomia) – Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 2013.

DRANSKI, J. A. L.; MALAVASI, U. C.; MALAVASI, M. M. Relationship between lignin content and quality of Pinus taeda seedlings. Revista Árvore, Viçosa, MG, v. 39, p. 905-913, 2015.

FAN, X.; MATHEIS, J. P.; FELLMAN, J. K. A role for jasmonates in climacteric fruit ripening. Planta, An International Journal of Plant Biology, [s. l.], v. 204, p. 444-449, 1998.

FRANK, S.; ROSS, S. Plant Physiology. 4t ed. California: Wadsworth, 1991.

HAASE, D. L. Understanding forest seedling quality: measurements and interpretation. Tree Planters Notes, Washington State, v. 52, n. 2, p. 24-30, 2008.

HUDGINS, J. W.; FRANCESCHI, R. V. Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiology, United States, v. 135, p. 2134-2149, 2004.

INMET- Instituto Nacional de Meteorologia. 2016. Estação Meteorológica de Observação de Superfície Automática, Brasília, DF, Brasil. Disponível em: http://www.inmet.gov.br/portal/index.php?r=estacoes/mapaEstacoes. Acesso em: 20 de abril de 2017.

JACOBS, D. F.; LANDIS, T. D. Hardening. In: DUMROESE, R. K.; LUNA, T.; LANDIS, T. D. (ed.). Nursery manual for native plants: guide for tribal nurseries. Washington: United States Department of Agriculture, Forest Service, 2009. v.1. p. 217-228.

JAFFE, M. J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation with special reference to Bryoniadioica. Planta, An International Journal of Plant Biology, [s. l.], v. 114, n. 2, p. 143-156, 1973.

KAVALIER, A. The effects of methyl jasmonate on the anthocyanin content and growth rates of the Wisconsin fast plants Brassicarapa. Research preformed at the College of Charleston. Charleston: College of Charleston, 2000.

KERBAUY, G. B. Fisiologia vegetal.2. ed. Rio de Janeiro: Guanabara Koogan, 2012.

KERN, A. K. et al. Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiology, Oxford, v. 25, n. 10, p. 1243-1251, 2005.

MALAVASI, U. C.; DAVIS, A. S.; MALAVAS, M. M. Lignin in Woody Plants under Water Stress: A Review. Revista Floresta e Ambiente, Rio de Janeiro, v. 23, n. 4, p. 589-597, 2016.

MARDANI, H. et al. Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Notulae Scientia Biologicae, Cluj-Napoca, v. 4, n. 1, p. 112-115, 2012.

MARTIN, L. et al. Acclimation kinetics of physiological and molecular responses of plants to multiple mechanical loadings. Journal of Experimental Botany, Oxford, v. 61, n. 1, p. 2403-2412, 2010.

MAZZUCHELLI, E. H. L.; SOUZA, G. M.; PACHECO, A. C. Rustifcação de mudas de eucalipto via aplicação de ácido salicílico. Pesquisa Agropecuária Tropical, Goiânia, v. 44, n. 4, p. 443-450, 2014.

MONTEIRO, M. B. O.; PEREIRA, R. P. W.; ABREU, H. S. Compositonal Analysis of the lignina of Eucalyptus urophylla treated with JA e 2,4-D. Biochemistry and Biotechnology Reports, Londrina, v. 1, n. 2, p. 48-56, 2012.

OLIVEIRA, M. B.; ABREU, H. S.; PEREIRA, R. P. W. Teor de lignina em plantas de Eucalyptus urophylla S. T. Blake tratadas com fitorreguladores. Silva Lusitana, Portugal, v. 17, n. 1, p. 51-57, 2009.

ORO, P. et al. Aplicação de regulador vegetal na aclimatação de mudas de Cariniana estrellensi. Cultivando o Saber, Cascavel, v. 5, n. 4, p. 103-112, 2011.

PANDOLFI, F. Avaliação de parâmetros de rusticidade de mudas clonais de eucalipto e suas influências no crescimento inicial do povoamento. 2009. Dissertação (Mestrado em Agronomia) - Universidade Federal do Espírito Santo, Alegre, 2009.

PORTAL FLORESTAL. Clone – AEC 1528 – Super Clone. São Paulo, [2016]. Disponível em: http://www.portalflorestal.com.br/portfolio/mudas-de-eucalipto-clonado-a-venda-clone-aec-1528-super-clone/. Acesso em: 08 nov. 2016.

PORTER, B. W. et al. Novel thigmomorphogenetic responses in Carica papaya: touch decreases anthocyanin levels and stimulates petiole cork outgrowths. Annals of Botany, Oxford, v. 103, n. 1, p. 847-858, 2009.

RITCHIE, G. A. et al. Assessing plant quality. In: LANDIS, T. D. et al.The container tree nursery manual: seedling processing, storage, and outplanting. Washington: USDA Forest Service, 2010. p. 18-81.

SANCHEZ, F. Jasmonatos: compuestos de alto valor para la agricultura: actividad biológica y rutabio sintética del ácido jasmónicoen plantas. Revista ICIDCA, La Habana, v. 42, n. 1/3, p. 51-59, 2008.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 3. ed. Brasília: EMBRAPA, 2013. 353 p.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, 2013. 954 p.

TELEWSKI, F. W. Is windswept tree growth negative Thigmotropism? Plant Science, [s. l.], n. 184, p. 20-28, 2012.

VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Revista Brasileira de Genética, Ribeirão Preto, p. 496, 1992.

VOLKWEIS, R. C. et al. Efeito da tigmomorfogênese na morfometria de mudas de Maytenus ilicifolia (Schrad.) Planch. Ciência Florestal, Santa Maria, v. 24, n. 2, p. 339- 342, 2014.

Downloads

Published

2020-06-04

How to Cite

Lima, P. R., Malavasi, U. C., Lopes, M. M., Borsoi, A., Dranski, J. A. L., Malavasi, M. de M., & Gurgacz, F. (2020). Lignin and stem flexibility in eucalyptus seedlings subjected to hardening. Ciência Florestal, 30(2), 352–366. https://doi.org/10.5902/1980509833047

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>