MATHEMATICAL MODELS FOR ESTIMATE THE FINE AND DEAD FUEL MOISTURE CONTENT

Authors

  • Benjamin Leonardo Alves White

DOI:

https://doi.org/10.5902/1980509831622

Keywords:

forest fire, fire risk, vapor exchange.

Abstract

This article aims to describe, through a literature review, the main existing mathematical models to estimate the fine dead fuel moisture content (1-hr time lag class) based on meteorological parameters. The determination of these values is extremely important for forest fire prevention and suppression efforts, and for conducting prescribed burns, since they account for the ignition probability and fire behavior. Based on the analysis, it can be concluded that the Fine Fuel Moisture Code (FFMC) of the Canadian Fire Weather Index (FWI), is the most widely used model in the world. However, since some experimental works report limitations and imprecision for FFMC and for all the others models examined in this paper, it is essential to test their precision before using them in an operational way. In Brazil, due to the lack of studies in this area, it is recommended to validate or build new models in order to improve prevention programs and assist in the development of an efficient nationwide forest fire risk model.

Downloads

Download data is not yet available.

References

ALEXANDER, M. E. Proposed revision of fire danger class criteria for forest and rural areas in New Zealand. 2. ed. Wellington: National Rural Fire Authority in association with the Scion Rural Fire Research Group, 2008. 62 p.

ALVES, M. G. V. et al. Modelagem de umidade do material combustível, baseada em variáveis meteorológicas. Revista Floresta, Curitiba, v. 39, n. 1, p. 167-174, 2009.

ANDREWS, P. L. BEHAVE: fire behavior prediction and fuel modeling system. Ogden: USDA Forest Service, 1986. 110 p. (General Technical Report, INT-194).

ANDREWS, P. L. Do you Behave? - Application of the BehavePlus Fire Modeling System. In: FIRE BEHAVIOR AND FUELS CONFERENCE, 3., 2010, Spokane. Proceedings... Birmingham: International Association of Wildland Fire, 2010.

ANDREWS, P. L.; BEVINS, C. D.; SELI, R. C. BehavePlus Fire Modeling System Version 2.0 User’s Guide. Ogden: USDA Forest Service, 2003. 133 p. (General Technical Report, RMRS-GTR-106WWW).

BIANCHI, L. O.; DEFOSSE, G. E. Ignition probability of fine dead surface fuels of native Patagonian forests or Argentina. Forest Systems, Madrid, v. 23, n. 1, p. 129-138, 2014.

BRADSHAW, L.; BRITTAIN, S. FireFamily Plus. Software available from USDA Forest Service, Rocky Mountain Research Station. [s. l.]: Missoula MT, 1999.

BROWN, J. K.; OBERHEU, R. D.; JOHNSTON, C. M. Handbook for inventorying surface fuels and biomass in the interior west. Ogden: USDA Forest Service, 1982. (General Technical Report, INT-129).

BURGAN, R. E. Revisions to the 1978 National Fire-danger Rating System. Macon: USDA Forest Service; Southeast Forest Experiment Station, 1988. 39 p. (Research Paper, SE-273).

CAMIA, A.; AMATULLI, G. Climatology of FWI over Europe: fire danger anomalies and index percentile rankings. In: INTERNATIONAL CONFERENCE ON FOREST FIRE RESEARCH, 6., 2010, Coimbra. Proceedings… Coimbra: ADAI; CEIF, 2010.

CERAPIÁ, V. R. Predição do Índice de Risco de Incêndio e modelagem computacional do comportamento do avanço da frente do fogo no Parque Nacional da Floresta da Tijuca. 2006. 197 f. Tese (Doutorado em Engenharia Civil) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

CHENEY, N. P. et al. Predicting fire behaviour in dry eucalypt forests in southern Australia. Forest Ecology and Management, Amsterdam, v. 280, p. 120-131, 2012.

CHEN, S. et al. Seasonal Predictions for Wildland Fire Severity. In: INTERNATIONAL SYMPOSIUM ON FIRE ECONOMICS, PLANNING, AND POLICY: COMMON PROBLEMS AND APPROACHES, 3., 2008, Carolina, Puerto Rico. Proceedings… Albany: USDA Forest Service; Pacific Southwest Research Station, 2008. p. 67-69.

COHEN, J. D.; DEEMING, J. E. The National Fire-danger Rating System: basic equations. Berkley: Pacific Southwest Forest and Range Experiment Station, 1985. 17 p. (General Technical Report, PSW-82).

DE GROOT, W. J. et al. Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change, [s. l.], v. 12, n. 1, p. 165-180, 2007.

DEEMING, J. E.; BURGAN, R. E.; COHEN, J. D. The National Fire-danger Rating System-1978. Ogden: USDA Forest Service; Intermountain Forest and Range Experiment Station General, 1977. 63 p. (Technical Report, INT-39).

DEEMING, J. E. et al. The National Fire-Danger Rating System. Fort Collins: USDA Forest Service; Rocky Mountain Forest and Range Experiment Station, 1972. 165 p. (Research Paper, RM-84).

EASTERLING, E. F. BEHAVE Wildland fine fuel moisture model: field testing and sensitivity analysis. 1986. 127 f. Dissertation (Master of Science in Forestry) - University of Montana, Montana, 1986.

GABBAN, A.; AYANZ, J. S. M.; VIEGAS, D. X. A comparative analysis of the use of NOAA‐AVHRR NDVI and FWI data for forest fire risk assessment. International Journal of Remote Sensing, Basingstoke, v. 29, n. 19, p. 5677-5687, 2008.

GOULD, J. S. et al. Project vesta-fire in dry eucalypt forest: fuel structure, fuel dynamics and fire behaviour. Perth: Ensis-CSIRO; Canberra ACT; Department of Environment and Conservation, 2007. 218 p.

HATTON, T. J. et al. The influence of soil moisture on Eucalyptus leaf litter moisture. Forest Science, Bethesda, v. 34, n. 2, p. 292-301, 1988.

HOLSTEN, A. et al. Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management, Amsterdam, v. 287, p. 123-131, 2013.

HOREL, J. D. et al. An evaluation of fire danger and behaviour indices in the Great Lakes Region calculated from station and gridded weather information. International Journal of Wildland Fire, Rosyn, v. 23, n. 2, p. 202-214, 2014.

LI, X. et al. A comparison of forest fire indices for predicting fire risk in contrasting climates in China. Natural Hazards, Dordrecht, v. 70, n. 2, p. 1339-1356, 2014.

LOOMIS, R. M.; WILLIAN, A. M. Comparing jack pine slash and forest floor moisture contents and National Fire Danger Rating System predictions. St. Paul: USDA Forest Service; North Central Forest Experimental Station, 1980.

MARSDEN-SMEDLEY, J. B.; CATCHPOLE, W. R. Fire modelling in Tasmanian buttongrass moorlands. III. Dead fuel moisture. International Journal of Wildland Fire, Rosyn, v. 10, n. 1, p. 241–253, 2001.

MATTHEWS, S. Effect of drying temperature on fuel moisture content measurements. International Journal of Wildland Fire, Rosyn, v. 19, p. 800-802, 2010.

MATTHEWS, S. Dead fuel moisture research: 1991-2012. International Journal of Wildland Fire, Rosyn, v. 23, n. 1, p. 78-92, 2014.

MCCAW, W. L.; GOULD, J. S.; CHENEY, N. P. Existing fire behaviour models under-predict the rate of spread of summer fires in open jarrah (Eucalyptus marginata) forest. Australian Forestry, Queen Victoria, v. 71, n. 1, p. 16-26, 2008.

MCRAE, D. J. et al. Estimating carbon emissions in Russia using the Canadian Forest Fire Danger Rating System. In: AGU FALL MEETING, 2009, San Francisco, CA. Proceedings… Washington: American Geophysical Union, 2009.

MOLDERS, N. Comparison of Canadian Forest Fire Danger Rating System and National Fire Danger Rating System fire indices derived from Weather Research and Forecasting (WRF) model data for the June 2005 Interior Alaska wildfires. Atmospheric Research, Amsterdam, v. 95, n. 1, p. 290-306, 2010.

PAGE, W. G.; JENKINS, M. J.; ALEXANDER, M. E. Models to Predict the Moisture Content of Lodgepole Pine Foliage during the Red Stage of Mountain Pine Beetle Attack. Forest Science, Bethesda, v. 61, n. 1, p. 128-134, 2015.

PYNE, S. J.; ANDREWS, P. L.; LAVEN, R. D. Introduction to wildland fire. 2. ed. New York: John Wiley and Sons, 1996. 769 p.

RAINHA, M.; FERNANDES, P. M.; VIEGAS, D. X. Using the Canadian Fire Weather Index (FWI) in the Natural Park of Montesinho, NE Portugal: calibration and application to fire management. In: INTERNATIONAL CONFERENCE ON FOREST FIRE RESEARCH, 4., 2002, Coimbra. Proceedings… Rotterdam: Millpress Science Publishers, 2002.

RAY, D.; NEPSTAD, D.; BRANDO, P. Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger. New Phytologist, Cambridge, v. 187, p. 720-732, 2010.

ROADS, J. O.; CHEN, S. C.; FUJIOKA, F. ECPC's weekly to seasonal global forecasts. Bulletin of the American Meteorological Society, Boston, v. 82, n. 4, p. 639-658, 2001.

ROTHERMEL, R. C. A mathematical model for predicting fire spread in wildland fuels. Ogden: USDA Forest Service; Intermountain Forest and Range Experiment Station, 1972. 40 p. (Research Paper, INT-115).

ROTHERMEL, R. C. How to predict the spread and intensity of forest and range fires. Ogden: USDA Forest Service; Intermountain Forest and Range Experiment Station, 1983. 161 p. (General Technical Report, INT-143).

ROTHERMEL, R. C. et al. Modeling moisture content of fine dead wildland fuels: input to the BEHAVE fire prediction system. Ogden: USDA Forest Service; Intermountain Research Station, 1986. 61 p. (Research Paper, INT-359).

RUIZ, A.; VEGA, J. A.; ÁLVAREZ, J. G. Modelización de la variabilidad horaria de los contenidos de humedad en hojarasca de Eucalyptus globulus. Investigación Agraria: Sistemas y Recursos Forestales, Madrid, v. 18, n. 3, p. 247-263, 2009.

SCHROEDER, M. J.; BUCK, C. C. Fire weather: a guide for application of meteorological information to forest fire control operations. Boise: USDA Forest Service, 1970. 229 p. (Agriculture Handbook, 360).

SCHUNK, C.; LEUCHNER, M.; MENZEL, A. Evaluation of a system for automatic dead fine fuel moisture measurements. In: VIEGAS, D. X. (Ed.) Advances in forest fire research. Coimbra: Imprensa da Universidade de Coimbra, 2014. p. 1115-1123.

SCHWARZ, B. Comparing the Fire Danger Rating Systems of Canada and the US: FWI versus NFDRS. Munich: GRIN Publishing GmbH, 2014. 17 p.

SCOTT, J. H. Introduction to wildfire behavior modeling. [S.l.]: USDA Forest Service, National Interagency Fuels, Fire & Vegetation Technology Transfer, 2012. 149 p.

SIMARD, A. J. The moisture content of forest fuels-1. A review of the basic concepts. Ottawa: Canadian Department of Forest and Rural Development; Forest Fire Research Institute, 1968. 47 p. (Information Report, FF-X-14).

SLIJEPCEVIC, A.; ANDERSON, W. Hourly variation in fine fuel moisture in eucalypt forests in Tasmania. In: INTERNATIONAL CONFERENCE ON FOREST FIRE RESEARCH, 5., 2006, Figueira da Foz. Proceedings… Amsterdam: Elsevier, 2006.

SLIJEPCEVIC, A.; ANDERSON, W.; MATTHEWS, S. Testing existing models for predicting hourly variation in fine fuel moisture in eucalypt forests. Forest Ecology and Management, Amsterdam, v. 306, p. 202-215, 2013.

SLIJEPCEVIC, A. et al. Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, Amsterdam, v. 335, p. 261-269, 2015.

STURM, T.; FERNANDES, P. M.; SUMRADA, R. The Canadian fire weather index system and wildfire activity in the Karst forest management area, Slovenia. European Journal of Forest Research, [S.l.], v. 131, n. 3, p. 829-834, 2012.

TANSKANEN, H. et al. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Canadian Journal of Forest Research, Ottawa, v. 35, p. 410-420, 2005.

TIAN, X. R. et al. Comparisons and assessment of forest fire danger systems. Forestry Studies in China, [s. l.], v. 7, n. 1, p. 53-61, 2005.

VAN WAGNER, C. E. New developments in forest fire danger rating. Chalk River: Canadian Forest Service; Petawawa Forest Experimental Station, 1970. (Informative Report, PS-X-19).

VAN WAGNER, C. E. Structure of the Canadian forest fire weather index. Ottawa: Canadian Forestry Service; Petawawa Forest Experiment Station; Department of the Environment, 1974. (Publication, 1333).

VEGA, J. A.; CASAL, M. Contraste de estimadores de humedad del combustible forestal fino muerto en montes arbolados de Galicia (NW de España). In: SEMINARIO SOBRE MÉTODOS Y EQUIPOS PARA LA PREVENCIÓN DE INCENDIOS FORESTALES, 1986, Valencia. Proceedings… Madrid: ICONA, 1986. p. 94-97.

VIEGAS, D. X. et al. Comparative study of various methods of fire danger evaluation in southern Europe. International Journal of Wildland Fire, Rosyn, v. 9, p. 235-246, 1999.

VIEGAS, D. X. et al. Calibração do sistema canadiano de perigo de incêndio para aplicação em Portugal. Silva Lusitana, Lisboa, v. 12, n. 1, p. 77-93, 2004.

VIEGAS, D. X.; VIEGAS, M. T. S. P.; FERREIRA, A. D. Moisture content of fine forest fuels and fire occurrence in Central Portugal. International Journal of Wildland Fire, Rosyn, v. 2, p. 69-86, 1992.

VINEY, N. R. A review of fine fuel moisture modelling. Internationa Journal of Wildland Fire, Rosyn, v. l, n. 4, p. 215-234, 1991.

VINEY, N. R.; CATCHPOLE, E. A. Estimating fuel moisture response times from field observation. International Journal of Wildland Fire, Rosyn, v. 1, n. 4, p. 211-214, 1991.

VINEY, N. R.; HATTON, T. J. Assessment of existing fine fuel moisture models applied to Eucalyptus litter. Australian Forestry, Queen Victoria, v. 52, n. 2, 1989.

ZHANG, H.; JIN, S.; DI, X. Y. Prediction of litter moisture content in Tahe Forestry Bureau of Northeast China based on FWI moisture codes. The Journal of Applied Ecology, Oxford, v. 25, n. 7, p. 2049-2055, 2014.

WASTL, C. et al. Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agricultural and Forest Meteorology, Amsterdam, v. 162, p. 1-13, 2012.

WHITE, B. L. A. Modelagem matemática e avaliação do comportamento do fogo em liteira de eucalipto. 190 f. 2014. Tese (Doutorado em Desenvolvimento e Meio Ambiente) - Universidade Federal de Sergipe, São Cristóvão, 2014.

WHITE, B. L. A. et al. Caracterização do material combustível superficial no Parque Nacional Serra de Itabaiana – Sergipe, Brasil. Ciência Florestal, Santa Maria, v. 24, n. 3, p. 699-706, 2014.

WHITE, B. L. A.; RIBEIRO, G. T.; SOUZA, R. M. O uso do BehavePlus como ferramenta para modelagem do comportamento e efeito do fogo. Pesquisa Florestal Brasileira, Colombo, v. 33, n. 73, p. 73-84, 2013.

Published

2018-04-02

How to Cite

White, B. L. A. (2018). MATHEMATICAL MODELS FOR ESTIMATE THE FINE AND DEAD FUEL MOISTURE CONTENT. Ciência Florestal, 28(1), 432–445. https://doi.org/10.5902/1980509831622

Issue

Section

Review Article

Most read articles by the same author(s)