Alterações fisiológicas induzidas pela rustificação em mudas de eucalipto em função dos estádios de crescimento
DOI:
https://doi.org/10.5902/1980509871208Palavras-chave:
Lignina, Metil jasmonato, Rigidez flexural, RustificaçãoResumo
A rustificação surge como uma estratégia interessante a fim de melhorar a qualidade das mudas nos viveiros florestais, melhorando a sobrevivência a campo. Assim, o objetivo da pesquisa foi evidenciar alterações fisiológicas resultantes da aplicação de metil jasmonato e flexões caulinares nos três estádios de crescimento em mudas de Eucalyptus urograndis. O experimento foi conduzido em Marechal Cândido Rondon, no Estado do Paraná, e foram utilizadas mudas de Eucalyptus urograndis. Os tratamentos foram constituídos de aplicações semanais de metil jasmonato (MeJA) e imposição diária de flexões caulinares, além do tratamento controle. As análises consistiram na quantificação da rigidez flexural, lignina nos caules e raízes, compostos fenólicos nas folhas e raízes, perda de eletrólitos nas raízes e sobrevivência a campo. Em Eucalyptus urograndis com 100 dias após a emergência (DAE) e nas 3 distâncias utilizadas para avaliação da rigidez flexural, as maiores médias foram observadas em mudas submetidas aos tratamentos químico e mecânico coincidindo com o aumento do teor de lignina no caule. Nas raízes, após a quantificação da perda de eletrólitos, no estádio I, houve redução das médias com a aplicação dos tratamentos. Na fase de campo, não houve diferença significativa estatística entre as avaliações morfométricas a campo e a sobrevivência de mudas, quantificadas a cada 15 dias, até completarem 180 dias do plantio. Ainda, as mudas pertencentes ao estádio I foram perdidas, visto que estas eram muitos jovens e não toleraram as condições estressantes.
Downloads
Referências
ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. de. M.; SPAROVEK, G. K. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, Switzerland, v. 22, n. 6, p. 711–728, jan. 2013. Available in: http://www.lerf.eco.br/img/publicacoes/Alvares_etal_2014.pdf. Accessed on: 27 Jan. 2022. DOI: 10.1127/0941-2948/2013/0507. DOI: https://doi.org/10.1127/0941-2948/2013/0507
ARAÚJO, M. M.; NAVROSKI, M. C.; SCHORN, L. A. Caracterização e análise de atributos morfológicos indicadores da qualidade de mudas em viveiro florestal. In: ARAÚJO, M. M. et al. Produção de sementes e mudas: um enfoque na silvicultura. Santa Maria: Ed. UFSM, 2018. p. 347-365.
AOYAMA, W.; MATSUMURA, A.; TSUTSUMI, Y.; NISHIDA, T. Lignification and peroxidase in tension wood of Eucalyptus viminalis seedlings. Journal of Wood Science, Japão, v. 47, n. 6, p. 419-424, ago./nov. 2001. Available in: https://jwoodscience.springeropen.com/articles/10.1007/BF00767892. Accessed on: 27 Jan. 2022. DOI:10.1007/BF00767892. DOI: https://doi.org/10.1007/BF00767892
BOERJAN, W.; RALPH, J.; BAUCHER, M. Lignin Biosynthesis. Annual Review of Plant Biology, United States America, v. 54, n. 1, p. 519-546, jun./mar. 2003. Available in: https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.54.031902.134938. Accessed on: 27 Jan. 2022. DOI: 10.1146/annurev.arplant.54.031902.134938. DOI: https://doi.org/10.1146/annurev.arplant.54.031902.134938
BRAZ, R. L.; OLIVEIRA, J. T. da. S.; ROSADO, A. M.; VIDAURRE, G. B.; PAES, J. B.; TOMAZELLO FILHO, M.; LOIOLA, P. L. Caracterização anatômica, física e química da madeira de clones de Eucalyptus cultivados em áreas sujeitas à ação de ventos. Ciência da Madeira, Pelotas, v. 5, n. 2, p. 127-137, jan./set. 2014. Available in: https://periodicos.ufpel.edu.br/index.php/cienciadamadeira/article/view/4790. Accessed on: 27 jan. 2022. DOI: 10.12953/2177-6830.v05n02a07. DOI: https://doi.org/10.12953/2177-6830.v05n02a07
CADORIN, D. A.; MALAVASI, U. C.; COUTINHO, P. W. R.; DRANSKI, J. A. L.; MALAVASI, M. de. M. Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. Cerne, Lavras, v. 21, n. 4, p. 657-664, mai./dez. 2015. Available in: https://www.scielo.br/j/cerne/a/x3MN9YGv3vk6Sz9cY9kyBnH/. Accessed on: 27 Jan. 2022. 10.1590/01047760201521042029. DOI: https://doi.org/10.1590/01047760201521042029
CADORIN, D. A.; MALAVASI, U. C.; MALAVASI, M. de. M.; DRANSKI, J. A. L.; COUTINHO, P. W. R. Morphometric changes and post-planting growth as a response to hardening on Tabebuia roseo-alba seedlings. Floresta, Curitiba, v. 51, n. 3, p. 539-546, jul./set 2021. Available in: https://www.researchgate.net/publication/352710407_MORPHOMETRIC_CHANGES_AND_POST-PLANTING_GROWTH_AS_A_RESPONSE_TO_HARDENING_ON_Tabebuia_roseo-alba_SEEDLINGS. Accessed on: 27 Jan. 2022. DOI:10.5380/rf.v51i3.67358. DOI: https://doi.org/10.5380/rf.v51i3.67358
CRUZ, C. D. GENES- a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, Maringá, v. 35, n. 3, p. 271-276, jul/set. 2013. Available in: https://www.scielo.br/j/asagr/a/7rm4LJLC37hGrFj49byTdwR/. Accessed on: 27 Jan. 2022. DOI: 10.4025/actasciagron.v35i3.21251. DOI: https://doi.org/10.4025/actasciagron.v35i3.21251
DEL CAMPO, A. D.; NAVARRO, R. M.; CEACERO, E. C. J. Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain, an approach for establishing a quality standard. New Forests, Netherlands, v. 39, n. 1, p. 19-37, mai./jun. 2010. Available in: https://www.researchgate.net/publication/225389335_Seedling_quality_and_field_performance_of_comercial_stocklots_of_containerized_holm_oak_Quercus_ilex_in_Mediterranean_Spain_An_approach_for_establishing_a_quality_standard. Accessed on: 27 Jan. 2022. DOI:10.1007/s11056-009-9152-9. DOI: https://doi.org/10.1007/s11056-009-9152-9
DRANSKI, J. A. L.; MALAVASI, U. C.; MALAVASI, M. M. Relationship between lignin content and quality of Pinus taeda seedlings. Revista Árvore, Viçosa, v. 39, n. 5, p. 905-913, out. 2015. Available in: https://www.scielo.br/j/rarv/a/xJ7gzPZLYY5cLYHbTJ8QxWj/?format=pdf&lang=en. Accessed on: 27 Jan. 2022. DOI: http://dx.doi.org/10.1590/0100-67622015000500013 DOI: https://doi.org/10.1590/0100-67622015000500013
FERNANDES, A. L. T.; FLORÊNCIO, T. M.; FARIA, M. F. Análise biométrica de florestas irrigadas de eucalipto nos cinco anos iniciais de desenvolvimento. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 16, n. 5, p. 505-513, mai. 2012. Available in: https://www.scielo.br/j/rbeaa/a/G85GgpVDL3hNNkQKcKbfT4w/?lang=pt. DOI: https://doi.org/10.1590/S1415-43662012000500006 DOI: https://doi.org/10.1590/S1415-43662012000500006
GEORGÉ, S.; BRAT, P.; ALTER, P.; AMIOT, M. J. Rapid determination of polyphenols and vitamin C in plant derived products. Journal of Agricultural and Food Chemistry, United States America, v. 53, n. 5, p. 1370-1373, jan. 2005. Available in: https://pubmed.ncbi.nlm.nih.gov/15740008/. DOI: 10.1021/jf048396b. DOI: https://doi.org/10.1021/jf048396b
GOBBO-NETO, L.; LOPES, N. P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, Ribeirão Preto, SP, v. 30, n. 2, p. 374-381, jul./out. 2007. Available in: https://www.scielo.br/j/qn/a/gn5mhqcFHSbXXgTKNLJTS9t/#. DOI: https://doi.org/10.1590/S0100-40422007000200026 DOI: https://doi.org/10.1590/S0100-40422007000200026
JACOBS, D.F.; LANDIS, T.D. Hardening. In: DUMROESE, R.K.; LUNA, T.; LANDIS, T.D. (Eds.). Nursery manual for native plants: Guide for tribal nurseries. Washington: United States Department of Agriculture, Forest Service, 2009. p. 217-228.
JAFFE, M. J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation with special reference to Bryonia dioica. Planta, Germany, v. 114, n. 2, p. 143-156, mar./jul, 1973. Available in: https://pubmed.ncbi.nlm.nih.gov/24458719/. DOI: 10.1007/BF00387472. DOI: https://doi.org/10.1007/BF00387472
JUNG, S. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiology and Biochemistry, França, v. 42, n. 3, p. 225-231, mar./jun. 2004. Available in: https://pubmed.ncbi.nlm.nih.gov/15051046/. DOI: 10.1007/BF00387472. DOI: https://doi.org/10.1016/j.plaphy.2004.01.001
LIMA, P. R.; MALAVASI, U. C.; LOPES, M. M.; DRANSKI, J. A. L.; MALAVASI, M. de. M.; BORSOI, A. Lignin and stem flexibility in eucalyptus seedlings subjected to hardening. Ciência florestal, Santa Maria, v. 30, n. 2, p. 352-366, abr./jun. 2020. Available in: https://www.scielo.br/j/cflo/a/bZxdkVDVpW9VJ6yNPJRGrMb/?lang=en. DOI: https://doi.org/10.5902/1980509833047 DOI: https://doi.org/10.5902/1980509833047
MALAVASI, U. C.; MALAVAS, M. M. Lignin in Woody Plants under Water Stress: A Review. Revista Floresta e Ambiente, Rio de Janeiro, v. 23, n. 4, p. 589-597, 2016. Available in: https://www.scielo.br/j/floram/a/TSVrbGTyVQxLXXdN9W8QmnS/. DOI: https://doi.org/10.1590/2179-8087.143715 DOI: https://doi.org/10.1590/2179-8087.143715
MARTIN, L.; LEBLANC-FOURNIER, N.; JULIEN, J. L.; MOULIA, B.; COUTAND, C. Acclimation kinetics of physiological and molecular responses of plants to multiple mechanical loadings. Journal of Experimental Botany, Oxford, v. 61, n. 1, p. 2403-2412, mai./abr. 2010. Available in:
https://academic.oup.com/jxb/article/61/9/2403/528427. DOI: https://doi.org/10.1093/jxb/erq069 DOI: https://doi.org/10.1093/jxb/erq069
MONTEIRO, M. B. O.; PEREIRA, R. P. W.; ABREU, H. S. Compositonal analysis of the lignina of Eucalyptus urophylla treated with JA e 2,4-D. Biochemistry and Biotechnology Reports, Londrina, v. 1, n. 2, p. 48-56, mai./jul. 2012. Available in: https://ojs.uel.br/revistas/uel/index.php/bbr/article/view/13547. DOI: https://doi.org/10.5433/2316-5200.2012v1n2p48 DOI: https://doi.org/10.5433/2316-5200.2012v1n2p48
NCUBE, B.; FINNIE, J. F.; STADEN, J. VAN. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, Africa do Sul, v. 82, n. 1, p. 11-20, jul./set. 2012. Available in: https://www.sciencedirect.com/science/article/pii/S0254629912000968. Accessed on: 18 Jan. 2022. DOI: https://doi.org/10.1016/j.sajb.2012.05.009
NOVAES, E.; KIRST, M.; CHIANG, V.; WINTER-SEDEROFF, H.; SEDEROFF, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiolog, United States America, v. 154, n. 1, p. 555-561, out. 2010. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949025/. Accessed on: 18 Jan. 2022. DOI: 10.1104/pp.110.161281. DOI: https://doi.org/10.1104/pp.110.161281
OLIVEIRA, B. de.; ABREU, H. dos. S.; PEREIRA, R. P. W. Teor de lignina em plantas de Eucalyptus urophylla S. T. Blake tratadas com fitorreguladores. Silva Lusitana, Lisboa, v. 17, n. 1, p. 51-57, ago./out. 2009. Available in: http://www.if.ufrrj.br/biolig/artigos_publicados/Teor%20de%20lignina%20em%20plantas%20de%20Eucalyptus%20urophylla%20S.%20T.%20Blake%20tratadas%20com%20fitorreguladores.pdf. Accessed on: 18 Jan. 2022. DOI: https://doi.org/10.1016/j.sajb.2012.05.009 DOI: https://doi.org/10.1016/j.sajb.2012.05.009
RAMAKRISHNA, A.; RAVISHANKAR, G. A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, United States America, v. 6, n. 11, p. 1720-1731, nov. 2011. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329344/. Accessed on: 18 Jan. 2022. DOI: 10.4161/psb.6.11.17613.
RANKENBERG, T.; GELDHOF, B.; VEEN, H.; HOLSTEENS, K.; POEL, B. V. de.; SASIDHARAN, R. Age-dependent abiotic stress resilience in plants. Trends in Plants Science, United Kingdom, v. 26, n. 7, p. 692-705, jul. 2021. Available in: https://www.cell.com/trends/plant-science/fulltext/S1360-1385(20)30393-9/. Accessed on: 18 de jan. 2022. DOI: https://doi.org/10.1016/j.tplants.2020.12.016 DOI: https://doi.org/10.1016/j.tplants.2020.12.016
ROCHA, M. E. L. Respostas morfofisiológicas e bioquímicas em mudas de Eucalyptus urograndis e Hymenaea courbaril L. após a rustificação. 2022. 164p. Tese (Doutorado em Agronomia) - Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, Paraná. 2016.
SANCHEZ, F. Jasmonatos: compuestos de alto valor para la agricultura: actividad biológica y ruta biosintética del ácido jasmónico en plantas. Revista ICIDCA, La Habana, CU, v. 42, n. 1-3, p. 51-59, dez. 2008. Available in: http://exa.exa.unne.edu.ar/biologia/fisiologia.vegetal/Jasmonatoscompuestosaltovaloragricultura.%20ParteI.pdf. Accessed on: 19 Oct. 2021. DOI: 10.4161/psb.6.11.17613. DOI: https://doi.org/10.4161/psb.6.11.17613
SANTARÉM, R. R. Transporte e translocação de água e solutos. In: TAIZ, L.; ZEIGER, E.; MØLLER, I.M.; MURPHY, A. Fisiologia Vegetal. Porto Alegre: Artmed, 2017. p.83-170.
SEIFERT, G. J.; BLAUKOPFC. Irritable walls: the plant extracellular matrix and signaling. Plant Physiology, United States America, v. 153, n. 2, p. 467-478, out. 2010. Available in: https://academic.oup.com/plphys/article/153/2/467/6109479. Accessed on: 19 Oct. 2021. DOI: 10.4161/psb.6.11.17613. DOI: https://doi.org/10.1104/pp.110.153940 DOI: https://doi.org/10.1104/pp.110.153940
TELEWSKI, F.W.; M. J. JAFFE. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiologia Plantarum, United Kingdom, v. 66, n. 1, p. 211–218, fev. 1986. Available in: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb02411.x. Accessed on: 19 Oct. 2021. DOI: https://doi.org/10.1111/j.1399-3054.1986.tb02411.x DOI: https://doi.org/10.1111/j.1399-3054.1986.tb02411.x
VANHOLME, R.; DEMEDTS, B.; MORREEL, K.; RALPH, J.; BOERJAN, W. Lignin biosynthesis and structure. Plant Physiology, United States America, v. 153, n. 3, p. 895–905, jul. 2010. Available in: https://academic.oup.com/plphys/article/153/3/895/6109625. Accessed on: 19 Oct. 2021. DOI: https://doi.org/10.1104/pp.110.155119 DOI: https://doi.org/10.1104/pp.110.155119
VAN SOEST, P. J. Nutritional ecology of the ruminant. Ithaca. 2.ed. New York: Cornell University Press, 1994. 476 p. DOI: https://doi.org/10.7591/9781501732355
VOLKWEIS, C. R.; DRANSKI, J. A. L.; ORO, P.; MALAVASI, U. C.; MALAVASI, M. de. M. Efeito da tigmomorfogênese na morfometria de mudas de Maytenus ilicifolia (Schrad.) Planch. Ciência Florestal, Santa Maria, v. 24, n. 2, p. 339-342, abr./jun. 2014. Available in: https://www.scielo.br/j/cflo/a/bcxw6VDmrJF3YpFfgZBDsbx/abstract/?lang=pt. Accessed on: 19 Oct. 2021. DOI: https://doi.org/10.5902/1980509814571 DOI: https://doi.org/10.5902/1980509814571
WASTERNACK, C.; HAUSE, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, United Kingdom, v. 111, n. 6, p. 1021–1058, jun./abr. 2013. Available in: https://academic.oup.com/aob/article/111/6/1021/151869. Accessed on: 19 Jan. 2022. DOI: https://doi.org/10.1093/aob/mct067
WILNER, J. Results of laboratory tests for winter hardines sofwoody plants by electrolyte methods. Proceedings American Horticultura Science, Norman, v. 66, n. 1, p. 93-99, jun./jul.1955. Available in: https://cdnsciencepub.com/doi/pdf/10.4141/cjps59-070. Accessed on: 19 de jan. 2022. DOI: https://doi.org/10.1093/aob/mct067 DOI: https://doi.org/10.1093/aob/mct067
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência Florestal
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
A CIÊNCIA FLORESTAL se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da lingua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas as autoras e aos autores.
Os trabalhos publicados passam a ser propriedade da revista CIÊNCIA FLORESTAL, sendo permitida a reprodução parcial ou total dos trabalhos, desde que a fonte original seja citada.
As opiniões emitidas pelos autores dos trabalhos são de sua exclusiva responsabilidade.