Antocianina: uma revisão sobre as tecnologias para obtenção do composto

Autores

DOI:

https://doi.org/10.5902/2179460X84237

Palavras-chave:

Extração, Atividade antioxidante, Composto fenólico, Antocianidinas

Resumo

As antocianinas são compostos fenólicos com altas propriedades antioxidantes obtidos de fontes vegetais, como folhas, flores e frutos. Por ser um composto termossensível, requer muito controle sobre o método de extração para que não haja degradação e redução da atividade antioxidante. Neste contexto, este trabalho apresenta uma revisão sistemática sobre extração de antocianinas, bem como uma discussão de parâmetros que influenciam fortemente o rendimento e a quantidade de antocianinas extraídas, tais como tipos de solventes e acidificantes, tempo de extração, relação sólido-líquido e temperatura. Observou-se que a extração por solvente e a extração assistida por ultrassom são as técnicas mais utilizadas, assim como o metanol e o etanol os solventes mais utilizados. A extração, independente da matéria-prima, é otimizada quando realizada em pH baixo e temperaturas mais amenas. Destaca-se também a preferência pelos solventes polares, devido à melhor solubilidade em relação aos bioativos.

Downloads

Biografia do Autor

Daniela Dal Castel Krein, Universidade de Passo Fundo

Mestrado em Ciência e Tecnologia de Alimentos pela Universidade de Passo Fundo.

Cassandro Davi Emer, Universidade de Passo Fundo

Mestre em Ciência e Tecnologia de Alimentos pela Universidade de Passo Fundo. 

Aline Dettmer, Universidade de Passo Fundo

Doutorado em Engenharia Química pela Universidade Federal do Rio Grande do Sul - UFRGS. 

Jeferson Stefanello Piccin, Universidade de Passo Fundo

Doutorado em Engenharia Química pela Universidade Federal do Rio Grande do Sul - UFRGS.

Referências

Agcam, E.; Akyildiz, A. & Balasubramaniam, V. (2017). Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chemistry, 237, 461–470. DOI: https://doi.org/10.1016/j.foodchem.2017.05.098

Aggarwal, S. & Jain, T. (2019). Modern pretreatment techniques for phytochemical extraction. Nutrition and Food Science, 49, 441–454. DOI: https://doi.org/10.1108/NFS-08-2018-0225

Akhbari, M.; Hamedi, S & AghamirI, Z.S. (2019). Optimization of total phenol and anthocyanin extraction from the peels of eggplant (solanum melongena l.) and biological activity of the extracts. Journal of Food Measurement and Characterization, 13, 3183–3197. DOI: https://doi.org/10.1007/s11694-019-00241-1

Albuquerque, B.; Pinela, J.; Barros, L.; Oliveira, M. & Ferreira, I. (2020). Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chemistry, 316. DOI: https://doi.org/10.1016/j.foodchem.2020.126364

Anggraeni, V.; Ramdanawati, L. & Ayuantika, W. (2019). Optimization of total anthocyanin extraction from brown rice (oryza nivara). Institute of Physics Publishing, 1338. DOI: https://doi.org/10.1088/1742-6596/1338/1/012006

Armbruster, W. (2002). Can indirect selection and genetic context contribute to trait diversification? a transition-probability study of blossom-colour evolution in two genera. Journal of Evolutionary Biology, 15, 468–486. DOI: https://doi.org/10.1046/j.1420-9101.2002.00399.x

Awika, J.M.; Rooney, L.W. & Waniska, R.D. (2005). Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry, 90, 293–301. DOI: https://doi.org/10.1016/j.foodchem.2004.03.058

Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Martin-Belloso, O.; Witrowa-Rajchert, D. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. DOI: https://doi.org/10.1016/j.foodres.2015.09.015

Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H. & Luo, Z. (2019). Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from pyrus communis ‘starkrimson’ fruit peel. Food Chemistry, 297, 124993. DOI: https://doi.org/10.1016/j.foodchem.2019.124993

Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P. & Li, P. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266–272. DOI: https://doi.org/10.1016/j.foodchem.2015.10.110

Casagrande, M.; ZAnela, J.; Pereira, D.; Lima, V.de.; Oldoni, T. & Carpes, S. (2019). Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. Journal of Food Measurement and Characterization, 13, 1120–1129. DOI: https://doi.org/10.1007/s11694-018-00027-x

Cassol, L.; Rodrigues, E. & Noreña, C.Z. (2019). Extracting phenolic compounds from hibiscus sabdariffa l. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168–177. DOI: https://doi.org/10.1016/j.indcrop.2019.03.023

Coklar, H. & Akbulut, M. (2017). Anthocyanins and phenolic compounds of mahonia aquifolium berries and their contributions to antioxidant activity. Journal of Functional Foods, 35, 166–174. DOI: https://doi.org/10.1016/j.jff.2017.05.037

Cömert, E.D. & Gökmen, V. (2017). Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety, 16, 382–399. DOI: https://doi.org/10.1111/1541-4337.12263

Condurache, N.; Aprodu, I.; Craciunescu, O.; Tatia, R.; Horincar, G.; Barbu, V.; Enachi, E.; Oancea, A.; Stanciuc, N. (2019). Probing the functionality of bioactives from eggplant peel extracts through extraction and microencapsulation in different polymers and whey protein hydrolysates. Food and Bioprocess Technology, 12, 1316–1329. DOI: https://doi.org/10.1007/s11947-019-02302-1

Da Porto, C. & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. DOI: https://doi.org/10.1016/j.foodchem.2018.03.059

Da Rocha, C. & Noreña, C. (2020). Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. International Journal of Food Engineering, 16. DOI: https://doi.org/10.1515/ijfe-2019-0191

Dai, Y.; Rozema, E.; Verpoorte, R. & Choi, Y. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50–56. DOI: https://doi.org/10.1016/j.chroma.2016.01.037

Dranca, F. & Oroian, M. (2016). Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (solanum melongena l.) peel. Ultrasonics Sonochemistry, 31, 637– 646. DOI: https://doi.org/10.1016/j.ultsonch.2015.11.008

Duy, N.; Thoai, H.; Lam, T. & Le, X. (2019). Effects of different extraction solvent systems on total phenolic, total flavonoid, total anthocyanin contents and antioxidant activities of roselle (hibiscus sabdariffa l.) extracts. Asian Journal of Chemistry, 31, 2517–2521. DOI: https://doi.org/10.14233/ajchem.2019.22147

Eliasson, L.; Labrosse, L. & Ahrné, L. (2017). Effect of drying technique and particle size of bilberry press cake on the extraction efficiency of anthocyanins by pressurized carbon dioxide extraction. LWT - Food Science and Technology, 85, 510–516. DOI: https://doi.org/10.1016/j.lwt.2017.03.030

Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S. & Servaes, K. (2018). Supercritical CO2 extraction of nannochloropsis sp.: A lipidomic study on the influence of pretreatment on yield and composition. Molecules, 23, p. 1854. DOI: https://doi.org/10.3390/molecules23081854

Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C. & Barbero, G. (2017). Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (morus nigra) pulp. Food Chemistry, 219, 23–32. DOI: https://doi.org/10.1016/j.foodchem.2016.09.122

Estevinho, B. N. & Rocha, F. (2018). Application of biopolymers in microencapsulation processes. In Biopolymers for Food Design, 191–222. DOI: https://doi.org/10.1016/B978-0-12-811449-0.00007-4

Ferarsa, S.; Zhang, W.; Moulai-Mostefa, N.; Ding, L.; Jaffrin, M. & Grimi, N. (2018). Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing, 109, 19–28. DOI: https://doi.org/10.1016/j.fbp.2018.02.006

Fernandes, F.; Fonteles, T.; Rodrigues, S.; Brito, E. De. & Tiwari, B. (2020). Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (myrciaria cauliflora) peel: kinetics and mathematical modeling. Journal of Food Science and Technology, 57(6). DOI: https://doi.org/10.1007/s13197-020-04270-3

Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D. & Navarro-Ocana, A. (2019). Extraction and identification of anthocyanins in corn cob and corn husk from cacahuacintle maize. Journal of Food Science, 84, p. 954–962. DOI: https://doi.org/10.1111/1750-3841.14589

Feuereisen, M.; Gamero Barraza, M.; Zimmermann, B.; Schieber, A. & Schulzekaysers, N. (2017). Pressurized liquid extraction of anthocyanins and biflavonoids from schinus terebinthifolius raddi: A multivariate optimization. Food Chemistry, 214, 564–571. DOI: https://doi.org/10.1016/j.foodchem.2016.07.002

Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C. & Olaiz, N. (2019). Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, 12, 1102–1109. DOI: https://doi.org/10.1007/s11947-019-02283-1

Gallego, R.; Bueno, M. & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – an update. TrAC - Trends in Analytical Chemistry, 116, 198–213. DOI: https://doi.org/10.1016/j.trac.2019.04.030

Guo, N.; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M. & Fu, Y.J. (2019). Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chemistry, 296, 78–85. DOI: https://doi.org/10.1016/j.foodchem.2019.05.196

He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L. & Yue, P.X. (2016a). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76. DOI: https://doi.org/10.1016/j.foodchem.2016.02.094

Herrera-Ramirez, J.; Meneses-Marentes, N. & Tarazona Díaz, M. (2020). Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. Journal of Food Measurement and Characterization, 14, 185–193. DOI: https://doi.org/10.1007/s11694-019-00280-8

Hosseini, S.; Gharachorloo, M.; Ghiassi-Tarzi, B. & Ghavami, M. (2016). Evaluation of the organic acids ability for extraction of anthocyanins and phenolic compounds from different sources and their degradation kinetics during cold storage. Polish Journal of Food and Nutrition Sciences, 66, 261–269. DOI: https://doi.org/10.1515/pjfns-2015-0057

Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.; Mulero, M.; Muguerza, B. & Arola-Arnal, A. (2018). Optimized extraction by response surface methodology used for the characterization and quantification of phenolic compounds in whole red grapes (Vitis vinifera). Nutrients, 10. DOI: https://doi.org/10.3390/nu10121931

Jafari, S.; Khazaei, K.M. & Assadpour, E. (2019). Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Science and Nutrition, 7, 1438–1445. DOI: https://doi.org/10.1002/fsn3.978

Jiang, H.; Wang, X. & Yang, D. (2019). Comparison of extraction methods for anthocyanins from fruit of rubus coreanus maq. and optimization of microwave assisted extraction process. Journal of Food Science and Technology (China), 37, 91–97.

Khazaei, K.; Jafari, S.; Ghorbani, M.; Kakhki, A. & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9, 1993–2001. DOI: https://doi.org/10.1007/s12161-015-0375-4

Kitrytè, V.; Narkeviči˙, A.; Tamkut, L.; Syrpas, M.; Pukalskien, M. & Venskutonis, P.R. (2020). Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus l.) pomace into functional ingredients: Process optimization and product characterization. Food Chemistry, 312, p. 126072. DOI: https://doi.org/10.1016/j.foodchem.2019.126072

Kou, P.; Kang, Y.F.; Wang, L.T.; Niu, L.J.; Xiao, Y.; Guo, N.; Cui, Q.; ...; Fu, Y.J. (2019). An integrated strategy for production of four anthocyanin compounds from ribes nigrum l. by deep eutectic solvents and flash chromatography. Journal of Industrial and Engineering Chemistry, 80, 614– 625. DOI: https://doi.org/10.1016/j.jiec.2019.08.053

Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S. & sairam, K. (2019). Valorization of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology, 56, 995–1007. DOI: https://doi.org/10.1007/s13197-018-03566-9

Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; ... HE, J. (2019a). Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules, 24. DOI: https://doi.org/10.3390/molecules24213816

Li, F.; Zhao, H.; XU, R.; Zhang, X.; Zhang, W.; Du, M.; Liu, X. & Fan, L. (2019b). Simultaneous optimization of the acidified water extraction for total anthocyanin content, total phenolic content, and antioxidant activity of blue honeysuckle berries (lonicera caerulea l.) using response surface methodology. Food Science and Nutrition, 7, 2968– 2976. DOI: https://doi.org/10.1002/fsn3.1152

Liu, C.; Xue, H.; Shen, L.; Liu, C.; Zheng, X.; Shi, J. & Xue, S. (2019). Improvement of anthocyanins rate of blueberry powder under variable power of microwave extraction. Separation and Purification Technology, 226, 286–298. DOI: https://doi.org/10.1016/j.seppur.2019.05.096

Machado, A.; Pereira, A.; Barbero, G. & Martínez, J. (2017). Recovery of anthocyanins from residues of rubus fruticosus, vaccinium myrtillus and eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060

Meini, M.R.; Cabezudo, I.; BoschettI, C. & Romanini, D. (2019). Recovery of phenolic antioxidants from syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry, 283, 257–264. DOI: https://doi.org/10.1016/j.foodchem.2019.01.037

Meziant, L.; Boutiche, M.; Bachirbey, M.; Saci, F. & Louaileche, H. (2018). Standardization of monomeric anthocyanins extraction from fig fruit peels (ficus carica l.) using single factor methodology. Journal of Food Measurement and Characterization, 12, 2865–2873. DOI: https://doi.org/10.1007/s11694-018-9901-6

Milea, A.; Vasile, A.; Cîrciumaru, A.; Dumitrascu, L.; Barbu, V.; Râpeanu, G.; Bahrim, G. & Stanciuc, N. (2019). Valorizations of sweet cherries skins phytochemicals by extraction, microencapsulation and development of value-added food products. Foods, 8. DOI: https://doi.org/10.3390/foods8060188

Mustafa, A. & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica chimica acta, 703, 8–18. DOI: https://doi.org/10.1016/j.aca.2011.07.018

Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A. & Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology, 148, 119–123. DOI: https://doi.org/10.1016/S0300-483X(00)00202-X

Nogales-Bueno, J.; Baca-Bocanegra, B.; HEredia, F. & Hernández-Hierro, J. (2020). Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content. Journal of Food Science, 85, 324–331. DOI: https://doi.org/10.1111/1750-3841.15006

Oktaviyanti, N. & Kartini, Mun’im, A. (2019). Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin lightening cosmetic materials from Ixora javanica flower. Heliyon, 5. DOI: https://doi.org/10.1016/j.heliyon.2019.e02950

Panic, M.; Gunjevic, V.; Cravotto, G. & Redovnikovic, I.R. (2019). Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 300. DOI: https://doi.org/10.1016/j.foodchem.2019.125185

Parra-Campos, A. & Ordóñez-Santos, L. (2019). Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in french meringue. Food Chemistry, 285, 59–66. DOI: https://doi.org/10.1016/j.foodchem.2019.01.158

Pataro, G.; Bobinaite, R.; Šatkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G. & Viškelis, P. (2017). Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields. Food and Bioprocess Technology, 10, 1595–1605. DOI: https://doi.org/10.1007/s11947-017-1928-x

Pinela, J.; Prieto, M.; Pereira, E.; Jabeur, I.; Barreiro, M.; Barros, L. & Ferreira, I. (2019) Optimization of heat and ultrasound-assisted extraction of anthocyanins rom hibiscus sabdariffacalyces for natural food colorants. Food Chemistry, 275, 309–321. DOI: https://doi.org/10.1016/j.foodchem.2018.09.118

Popović, D.; Kocić, G.; Katić, V.; Jović, Z.; Zarubica, A.; Veličković, L.J.; … Rakić, V. (2019). Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chemico-biological interactions, 304, 61–72. DOI: https://doi.org/10.1016/j.cbi.2019.02.022

Pérez-Orozco, J.; Sánchez-Herrera, L.; Barrios-Salgado, E. & Sumaya-Martínez, M. (2020). Kinetics of solid-liquid extraction of anthocyanins obtained from hibiscus rosa-sinensis [Cinética de la extracción sólido-líquido de antocianinas obtenidas a partir de hibiscus rosa-sinensis]. Revista Mexicana de Ingeniera Quimica, 19, 813–826. DOI: https://doi.org/10.24275/rmiq/Alim830

Qin, B.; Liu, X.; Cui, H.; Ma, Y.; Wang, Z. & Han, J. (2017). Aqueous two phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum murr. Preparative Biochemistry and Biotechnology, 47, 881–888. DOI: https://doi.org/10.1080/10826068.2017.1350980

R Core Team. R: A Language and Environment for Statistical Computing. Retrived from: https://www.R-project.org. Viena: R Foundation for Statistical Computing.

Ravanfar, R.; Moein, M.; Niakousari, M. & Tamaddon, A. (2018). Extraction and fractionation of anthocyanins from red cabbage: ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization, 12, p. 2271–2277. DOI: https://doi.org/10.1007/s11694-018-9844-y

Rose, P.M.; Cantrill, V.; Benohoud, M.; Tidder, A.; Rayner, C.M. & Blackburn, R.S. (2018). Application of anthocyanins from blackcurrant (ribes nigrum l.) fruit waste as renewable hair dyes. Journal of agricultural and food chemistry, 66, 6790–6798. DOI: https://doi.org/10.1021/acs.jafc.8b01044

Ryu, D. & Koh, E. (2018). Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from Campbell early grape using response surface methodology. Korean Journal of Food Science and Technology, 50, 474–479.

Ryu, D. & Koh, E. (2019). Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from black soybeans (Glycine max l.). Food Analytical Methods, 12, 1382–1389. DOI: https://doi.org/10.1007/s12161-019-01462-2

Ryu, D.; Park.; H.M. & Koh, E. (2020). Effects of solid-liquid ratio, time, and temperature on water extraction of anthocyanin from Campbell early grape. Food Analytical Methods, 13, 637–646. DOI: https://doi.org/10.1007/s12161-019-01688-0

Sang, J.; Sang, J.; Ma, Q.; Hou, X.F. & Li, C.Q. (2017). Extraction optimization and identification of anthocyanins from nitraria tangutorun bobr. seed meal and establishment of a green analytical method of anthocyanins. Food Chemistry, 218, 386–395. DOI: https://doi.org/10.1016/j.foodchem.2016.09.093

Silva, D.; Pauletto, R.; Cavalheiro, S.; Bochi, V.; Rodrigues, E.; Weber, J.; Silva, C.; Emanuelli, T. (2020). Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. Journal of Food Composition and Analysis, 89. DOI: https://doi.org/10.1016/j.jfca.2020.103470

Silva, S.; Costa, E.; Calhau, C.; Morais, R. & Pintado, M. (2017). Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition, 57, 3072–308. DOI: https://doi.org/10.1080/10408398.2015.1087963

Suhaimi, S.; Nasri, N.; Wahab, S.; Ismail, N.; Shahimin, M. & Sauli, Z. (2020). Ultraviolet-visible absorbance analysis on solvent dependent effect of tropical plant anthocyanin extraction for dye-sensitized solar cells. American Institute of Physics Inc, 2203. DOI: https://doi.org/10.1063/1.5142146

Swer, T. & Chauhan, K. (2019). Stability studies of enzyme aided anthocyanin extracts from Prunus nepalensis l. LWT, 102, 181–189. DOI: https://doi.org/10.1016/j.lwt.2018.12.016

Swer, T.; Chauhan, K.; Mukhim, C.; Bashir, K. & Kumar, A. (2019). Application of anthocyanins extracted from sohiong (prunus nepalensis l.) in food processing. LWT, 114. DOI: https://doi.org/10.1016/j.lwt.2019.108360

Swer, T.; Chauhan, K.; Paul, P. & Mukhim, C. (2016). Evaluation of enzyme treatment conditions on extraction of anthocyanins from prunus nepalensis l. International Journal of Biological Macromolecules, 92, 867–871. DOI: https://doi.org/10.1016/j.ijbiomac.2016.07.105

Vergara-Salinas, J. R.; Bulnes, P.; Zuniga, M.C.; Perez-Jimenez, J.; Torres, J.L.; Mateos-Martín, M.L.; Perez-Correa, J.R. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61, 6929–6936. DOI: https://doi.org/10.1021/jf4010143

Vázquez-Espinosa, M.; González De Peredo, A.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barbero, G. & Espada-Bellido, E. (2019). Assessment of ultrasound assisted extraction as an alternative method for the extraction of anthocyanins and total phenolic compounds from maqui berries (Aristotelia chilensis (mol.) stuntz). Agronomy, 9. DOI: https://doi.org/10.3390/agronomy9030148

Wang, Y.; Li, B.; Ma, Y.; Wang, X.; Zhang, X.; Zhang, Q. & Meng, X. (2016). Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in brl-3a cells: Oxidative stress, energy metabolism, hepatic function. Journal of Functional Foods, 24, 1–10. DOI: https://doi.org/10.1016/j.jff.2016.03.023

Wang, Y.; Zhao, L.; Zhang, R.; Yang, X.; Sun, Y.; Shi, L. & Xue, P. (2020). Optimization of ultrasound-assisted extraction by response surface methodology, antioxidant capacity, and tyrosinase inhibitory activity of anthocyanins from red rice bran. Food Science and Nutrition, 8, 921–932. DOI: https://doi.org/10.1002/fsn3.1371

Xie, J.; Xu, Y.; Shishir, M.; Zheng, X. & Chen, W. (2019). Green extraction of mulberry anthocyanin with improved stability using ß-cyclodextrin. Journal of the Science of Food and Agriculture, 99, 2494–2503. DOI: https://doi.org/10.1002/jsfa.9459

Yu, Y.G.; LIang, Z.M.; Wan, Z.C.; Liang, Y.S.; Yu, X.X.; Wang, C. & Zhang, Q. (2018). Purification and thermal stability of anthocyanin from hibiscus sabdariffa. Modern Food Science and Technology, 34, 58–66.

Zapata, I.; Álzate, A.; Zapata, K.; Arias, J.; Puertas, M. & Rojano, B. (2019). Effect of pH, temperature and time of extraction on the antioxidant properties of Vaccinium meridionale swartz. Journal of Berry Research, 9, 39–49. DOI: https://doi.org/10.3233/JBR-18299

Publicado

2024-11-22

Como Citar

Krein, D. D. C., Emer, C. D., Dettmer, A., & Piccin, J. S. (2024). Antocianina: uma revisão sobre as tecnologias para obtenção do composto. Ciência E Natura, 46, e84237. https://doi.org/10.5902/2179460X84237

Edição

Seção

Química