Antocianina: uma revisão sobre as tecnologias para obtenção do composto
DOI:
https://doi.org/10.5902/2179460X84237Palavras-chave:
Extração, Atividade antioxidante, Composto fenólico, AntocianidinasResumo
As antocianinas são compostos fenólicos com altas propriedades antioxidantes obtidos de fontes vegetais, como folhas, flores e frutos. Por ser um composto termossensível, requer muito controle sobre o método de extração para que não haja degradação e redução da atividade antioxidante. Neste contexto, este trabalho apresenta uma revisão sistemática sobre extração de antocianinas, bem como uma discussão de parâmetros que influenciam fortemente o rendimento e a quantidade de antocianinas extraídas, tais como tipos de solventes e acidificantes, tempo de extração, relação sólido-líquido e temperatura. Observou-se que a extração por solvente e a extração assistida por ultrassom são as técnicas mais utilizadas, assim como o metanol e o etanol os solventes mais utilizados. A extração, independente da matéria-prima, é otimizada quando realizada em pH baixo e temperaturas mais amenas. Destaca-se também a preferência pelos solventes polares, devido à melhor solubilidade em relação aos bioativos.
Downloads
Referências
Agcam, E.; Akyildiz, A. & Balasubramaniam, V. (2017). Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chemistry, 237, 461–470. DOI: https://doi.org/10.1016/j.foodchem.2017.05.098
Aggarwal, S. & Jain, T. (2019). Modern pretreatment techniques for phytochemical extraction. Nutrition and Food Science, 49, 441–454. DOI: https://doi.org/10.1108/NFS-08-2018-0225
Akhbari, M.; Hamedi, S & AghamirI, Z.S. (2019). Optimization of total phenol and anthocyanin extraction from the peels of eggplant (solanum melongena l.) and biological activity of the extracts. Journal of Food Measurement and Characterization, 13, 3183–3197. DOI: https://doi.org/10.1007/s11694-019-00241-1
Albuquerque, B.; Pinela, J.; Barros, L.; Oliveira, M. & Ferreira, I. (2020). Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chemistry, 316. DOI: https://doi.org/10.1016/j.foodchem.2020.126364
Anggraeni, V.; Ramdanawati, L. & Ayuantika, W. (2019). Optimization of total anthocyanin extraction from brown rice (oryza nivara). Institute of Physics Publishing, 1338. DOI: https://doi.org/10.1088/1742-6596/1338/1/012006
Armbruster, W. (2002). Can indirect selection and genetic context contribute to trait diversification? a transition-probability study of blossom-colour evolution in two genera. Journal of Evolutionary Biology, 15, 468–486. DOI: https://doi.org/10.1046/j.1420-9101.2002.00399.x
Awika, J.M.; Rooney, L.W. & Waniska, R.D. (2005). Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry, 90, 293–301. DOI: https://doi.org/10.1016/j.foodchem.2004.03.058
Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Martin-Belloso, O.; Witrowa-Rajchert, D. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. DOI: https://doi.org/10.1016/j.foodres.2015.09.015
Belwal, T.; Huang, H.; Li, L.; Duan, Z.; Zhang, X.; Aalim, H. & Luo, Z. (2019). Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from pyrus communis ‘starkrimson’ fruit peel. Food Chemistry, 297, 124993. DOI: https://doi.org/10.1016/j.foodchem.2019.124993
Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P. & Li, P. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266–272. DOI: https://doi.org/10.1016/j.foodchem.2015.10.110
Casagrande, M.; ZAnela, J.; Pereira, D.; Lima, V.de.; Oldoni, T. & Carpes, S. (2019). Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. Journal of Food Measurement and Characterization, 13, 1120–1129. DOI: https://doi.org/10.1007/s11694-018-00027-x
Cassol, L.; Rodrigues, E. & Noreña, C.Z. (2019). Extracting phenolic compounds from hibiscus sabdariffa l. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168–177. DOI: https://doi.org/10.1016/j.indcrop.2019.03.023
Coklar, H. & Akbulut, M. (2017). Anthocyanins and phenolic compounds of mahonia aquifolium berries and their contributions to antioxidant activity. Journal of Functional Foods, 35, 166–174. DOI: https://doi.org/10.1016/j.jff.2017.05.037
Cömert, E.D. & Gökmen, V. (2017). Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety, 16, 382–399. DOI: https://doi.org/10.1111/1541-4337.12263
Condurache, N.; Aprodu, I.; Craciunescu, O.; Tatia, R.; Horincar, G.; Barbu, V.; Enachi, E.; Oancea, A.; Stanciuc, N. (2019). Probing the functionality of bioactives from eggplant peel extracts through extraction and microencapsulation in different polymers and whey protein hydrolysates. Food and Bioprocess Technology, 12, 1316–1329. DOI: https://doi.org/10.1007/s11947-019-02302-1
Da Porto, C. & Natolino, A. (2018). Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chemistry, 258, 137–143. DOI: https://doi.org/10.1016/j.foodchem.2018.03.059
Da Rocha, C. & Noreña, C. (2020). Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. International Journal of Food Engineering, 16. DOI: https://doi.org/10.1515/ijfe-2019-0191
Dai, Y.; Rozema, E.; Verpoorte, R. & Choi, Y. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50–56. DOI: https://doi.org/10.1016/j.chroma.2016.01.037
Dranca, F. & Oroian, M. (2016). Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (solanum melongena l.) peel. Ultrasonics Sonochemistry, 31, 637– 646. DOI: https://doi.org/10.1016/j.ultsonch.2015.11.008
Duy, N.; Thoai, H.; Lam, T. & Le, X. (2019). Effects of different extraction solvent systems on total phenolic, total flavonoid, total anthocyanin contents and antioxidant activities of roselle (hibiscus sabdariffa l.) extracts. Asian Journal of Chemistry, 31, 2517–2521. DOI: https://doi.org/10.14233/ajchem.2019.22147
Eliasson, L.; Labrosse, L. & Ahrné, L. (2017). Effect of drying technique and particle size of bilberry press cake on the extraction efficiency of anthocyanins by pressurized carbon dioxide extraction. LWT - Food Science and Technology, 85, 510–516. DOI: https://doi.org/10.1016/j.lwt.2017.03.030
Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S. & Servaes, K. (2018). Supercritical CO2 extraction of nannochloropsis sp.: A lipidomic study on the influence of pretreatment on yield and composition. Molecules, 23, p. 1854. DOI: https://doi.org/10.3390/molecules23081854
Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C. & Barbero, G. (2017). Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (morus nigra) pulp. Food Chemistry, 219, 23–32. DOI: https://doi.org/10.1016/j.foodchem.2016.09.122
Estevinho, B. N. & Rocha, F. (2018). Application of biopolymers in microencapsulation processes. In Biopolymers for Food Design, 191–222. DOI: https://doi.org/10.1016/B978-0-12-811449-0.00007-4
Ferarsa, S.; Zhang, W.; Moulai-Mostefa, N.; Ding, L.; Jaffrin, M. & Grimi, N. (2018). Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing, 109, 19–28. DOI: https://doi.org/10.1016/j.fbp.2018.02.006
Fernandes, F.; Fonteles, T.; Rodrigues, S.; Brito, E. De. & Tiwari, B. (2020). Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (myrciaria cauliflora) peel: kinetics and mathematical modeling. Journal of Food Science and Technology, 57(6). DOI: https://doi.org/10.1007/s13197-020-04270-3
Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D. & Navarro-Ocana, A. (2019). Extraction and identification of anthocyanins in corn cob and corn husk from cacahuacintle maize. Journal of Food Science, 84, p. 954–962. DOI: https://doi.org/10.1111/1750-3841.14589
Feuereisen, M.; Gamero Barraza, M.; Zimmermann, B.; Schieber, A. & Schulzekaysers, N. (2017). Pressurized liquid extraction of anthocyanins and biflavonoids from schinus terebinthifolius raddi: A multivariate optimization. Food Chemistry, 214, 564–571. DOI: https://doi.org/10.1016/j.foodchem.2016.07.002
Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C. & Olaiz, N. (2019). Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food and Bioprocess Technology, 12, 1102–1109. DOI: https://doi.org/10.1007/s11947-019-02283-1
Gallego, R.; Bueno, M. & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – an update. TrAC - Trends in Analytical Chemistry, 116, 198–213. DOI: https://doi.org/10.1016/j.trac.2019.04.030
Guo, N.; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M. & Fu, Y.J. (2019). Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chemistry, 296, 78–85. DOI: https://doi.org/10.1016/j.foodchem.2019.05.196
He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L. & Yue, P.X. (2016a). Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (vaccinium ashei) wine pomace. Food Chemistry, 204, 70–76. DOI: https://doi.org/10.1016/j.foodchem.2016.02.094
Herrera-Ramirez, J.; Meneses-Marentes, N. & Tarazona Díaz, M. (2020). Optimizing the extraction of anthocyanins from purple passion fruit peel using response surface methodology. Journal of Food Measurement and Characterization, 14, 185–193. DOI: https://doi.org/10.1007/s11694-019-00280-8
Hosseini, S.; Gharachorloo, M.; Ghiassi-Tarzi, B. & Ghavami, M. (2016). Evaluation of the organic acids ability for extraction of anthocyanins and phenolic compounds from different sources and their degradation kinetics during cold storage. Polish Journal of Food and Nutrition Sciences, 66, 261–269. DOI: https://doi.org/10.1515/pjfns-2015-0057
Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.; Mulero, M.; Muguerza, B. & Arola-Arnal, A. (2018). Optimized extraction by response surface methodology used for the characterization and quantification of phenolic compounds in whole red grapes (Vitis vinifera). Nutrients, 10. DOI: https://doi.org/10.3390/nu10121931
Jafari, S.; Khazaei, K.M. & Assadpour, E. (2019). Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Science and Nutrition, 7, 1438–1445. DOI: https://doi.org/10.1002/fsn3.978
Jiang, H.; Wang, X. & Yang, D. (2019). Comparison of extraction methods for anthocyanins from fruit of rubus coreanus maq. and optimization of microwave assisted extraction process. Journal of Food Science and Technology (China), 37, 91–97.
Khazaei, K.; Jafari, S.; Ghorbani, M.; Kakhki, A. & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9, 1993–2001. DOI: https://doi.org/10.1007/s12161-015-0375-4
Kitrytè, V.; Narkeviči˙, A.; Tamkut, L.; Syrpas, M.; Pukalskien, M. & Venskutonis, P.R. (2020). Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus l.) pomace into functional ingredients: Process optimization and product characterization. Food Chemistry, 312, p. 126072. DOI: https://doi.org/10.1016/j.foodchem.2019.126072
Kou, P.; Kang, Y.F.; Wang, L.T.; Niu, L.J.; Xiao, Y.; Guo, N.; Cui, Q.; ...; Fu, Y.J. (2019). An integrated strategy for production of four anthocyanin compounds from ribes nigrum l. by deep eutectic solvents and flash chromatography. Journal of Industrial and Engineering Chemistry, 80, 614– 625. DOI: https://doi.org/10.1016/j.jiec.2019.08.053
Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S. & sairam, K. (2019). Valorization of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. Journal of Food Science and Technology, 56, 995–1007. DOI: https://doi.org/10.1007/s13197-018-03566-9
Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; ... HE, J. (2019a). Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules, 24. DOI: https://doi.org/10.3390/molecules24213816
Li, F.; Zhao, H.; XU, R.; Zhang, X.; Zhang, W.; Du, M.; Liu, X. & Fan, L. (2019b). Simultaneous optimization of the acidified water extraction for total anthocyanin content, total phenolic content, and antioxidant activity of blue honeysuckle berries (lonicera caerulea l.) using response surface methodology. Food Science and Nutrition, 7, 2968– 2976. DOI: https://doi.org/10.1002/fsn3.1152
Liu, C.; Xue, H.; Shen, L.; Liu, C.; Zheng, X.; Shi, J. & Xue, S. (2019). Improvement of anthocyanins rate of blueberry powder under variable power of microwave extraction. Separation and Purification Technology, 226, 286–298. DOI: https://doi.org/10.1016/j.seppur.2019.05.096
Machado, A.; Pereira, A.; Barbero, G. & Martínez, J. (2017). Recovery of anthocyanins from residues of rubus fruticosus, vaccinium myrtillus and eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060
Meini, M.R.; Cabezudo, I.; BoschettI, C. & Romanini, D. (2019). Recovery of phenolic antioxidants from syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry, 283, 257–264. DOI: https://doi.org/10.1016/j.foodchem.2019.01.037
Meziant, L.; Boutiche, M.; Bachirbey, M.; Saci, F. & Louaileche, H. (2018). Standardization of monomeric anthocyanins extraction from fig fruit peels (ficus carica l.) using single factor methodology. Journal of Food Measurement and Characterization, 12, 2865–2873. DOI: https://doi.org/10.1007/s11694-018-9901-6
Milea, A.; Vasile, A.; Cîrciumaru, A.; Dumitrascu, L.; Barbu, V.; Râpeanu, G.; Bahrim, G. & Stanciuc, N. (2019). Valorizations of sweet cherries skins phytochemicals by extraction, microencapsulation and development of value-added food products. Foods, 8. DOI: https://doi.org/10.3390/foods8060188
Mustafa, A. & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica chimica acta, 703, 8–18. DOI: https://doi.org/10.1016/j.aca.2011.07.018
Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A. & Packer, L. (2000). Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology, 148, 119–123. DOI: https://doi.org/10.1016/S0300-483X(00)00202-X
Nogales-Bueno, J.; Baca-Bocanegra, B.; HEredia, F. & Hernández-Hierro, J. (2020). Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content. Journal of Food Science, 85, 324–331. DOI: https://doi.org/10.1111/1750-3841.15006
Oktaviyanti, N. & Kartini, Mun’im, A. (2019). Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin lightening cosmetic materials from Ixora javanica flower. Heliyon, 5. DOI: https://doi.org/10.1016/j.heliyon.2019.e02950
Panic, M.; Gunjevic, V.; Cravotto, G. & Redovnikovic, I.R. (2019). Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 300. DOI: https://doi.org/10.1016/j.foodchem.2019.125185
Parra-Campos, A. & Ordóñez-Santos, L. (2019). Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in french meringue. Food Chemistry, 285, 59–66. DOI: https://doi.org/10.1016/j.foodchem.2019.01.158
Pataro, G.; Bobinaite, R.; Šatkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G. & Viškelis, P. (2017). Improving the extraction of juice and anthocyanins from blueberry fruits and their by-products by application of pulsed electric fields. Food and Bioprocess Technology, 10, 1595–1605. DOI: https://doi.org/10.1007/s11947-017-1928-x
Pinela, J.; Prieto, M.; Pereira, E.; Jabeur, I.; Barreiro, M.; Barros, L. & Ferreira, I. (2019) Optimization of heat and ultrasound-assisted extraction of anthocyanins rom hibiscus sabdariffacalyces for natural food colorants. Food Chemistry, 275, 309–321. DOI: https://doi.org/10.1016/j.foodchem.2018.09.118
Popović, D.; Kocić, G.; Katić, V.; Jović, Z.; Zarubica, A.; Veličković, L.J.; … Rakić, V. (2019). Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chemico-biological interactions, 304, 61–72. DOI: https://doi.org/10.1016/j.cbi.2019.02.022
Pérez-Orozco, J.; Sánchez-Herrera, L.; Barrios-Salgado, E. & Sumaya-Martínez, M. (2020). Kinetics of solid-liquid extraction of anthocyanins obtained from hibiscus rosa-sinensis [Cinética de la extracción sólido-líquido de antocianinas obtenidas a partir de hibiscus rosa-sinensis]. Revista Mexicana de Ingeniera Quimica, 19, 813–826. DOI: https://doi.org/10.24275/rmiq/Alim830
Qin, B.; Liu, X.; Cui, H.; Ma, Y.; Wang, Z. & Han, J. (2017). Aqueous two phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum murr. Preparative Biochemistry and Biotechnology, 47, 881–888. DOI: https://doi.org/10.1080/10826068.2017.1350980
R Core Team. R: A Language and Environment for Statistical Computing. Retrived from: https://www.R-project.org. Viena: R Foundation for Statistical Computing.
Ravanfar, R.; Moein, M.; Niakousari, M. & Tamaddon, A. (2018). Extraction and fractionation of anthocyanins from red cabbage: ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization, 12, p. 2271–2277. DOI: https://doi.org/10.1007/s11694-018-9844-y
Rose, P.M.; Cantrill, V.; Benohoud, M.; Tidder, A.; Rayner, C.M. & Blackburn, R.S. (2018). Application of anthocyanins from blackcurrant (ribes nigrum l.) fruit waste as renewable hair dyes. Journal of agricultural and food chemistry, 66, 6790–6798. DOI: https://doi.org/10.1021/acs.jafc.8b01044
Ryu, D. & Koh, E. (2018). Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from Campbell early grape using response surface methodology. Korean Journal of Food Science and Technology, 50, 474–479.
Ryu, D. & Koh, E. (2019). Optimization of ultrasound-assisted extraction of anthocyanins and phenolic compounds from black soybeans (Glycine max l.). Food Analytical Methods, 12, 1382–1389. DOI: https://doi.org/10.1007/s12161-019-01462-2
Ryu, D.; Park.; H.M. & Koh, E. (2020). Effects of solid-liquid ratio, time, and temperature on water extraction of anthocyanin from Campbell early grape. Food Analytical Methods, 13, 637–646. DOI: https://doi.org/10.1007/s12161-019-01688-0
Sang, J.; Sang, J.; Ma, Q.; Hou, X.F. & Li, C.Q. (2017). Extraction optimization and identification of anthocyanins from nitraria tangutorun bobr. seed meal and establishment of a green analytical method of anthocyanins. Food Chemistry, 218, 386–395. DOI: https://doi.org/10.1016/j.foodchem.2016.09.093
Silva, D.; Pauletto, R.; Cavalheiro, S.; Bochi, V.; Rodrigues, E.; Weber, J.; Silva, C.; Emanuelli, T. (2020). Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. Journal of Food Composition and Analysis, 89. DOI: https://doi.org/10.1016/j.jfca.2020.103470
Silva, S.; Costa, E.; Calhau, C.; Morais, R. & Pintado, M. (2017). Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition, 57, 3072–308. DOI: https://doi.org/10.1080/10408398.2015.1087963
Suhaimi, S.; Nasri, N.; Wahab, S.; Ismail, N.; Shahimin, M. & Sauli, Z. (2020). Ultraviolet-visible absorbance analysis on solvent dependent effect of tropical plant anthocyanin extraction for dye-sensitized solar cells. American Institute of Physics Inc, 2203. DOI: https://doi.org/10.1063/1.5142146
Swer, T. & Chauhan, K. (2019). Stability studies of enzyme aided anthocyanin extracts from Prunus nepalensis l. LWT, 102, 181–189. DOI: https://doi.org/10.1016/j.lwt.2018.12.016
Swer, T.; Chauhan, K.; Mukhim, C.; Bashir, K. & Kumar, A. (2019). Application of anthocyanins extracted from sohiong (prunus nepalensis l.) in food processing. LWT, 114. DOI: https://doi.org/10.1016/j.lwt.2019.108360
Swer, T.; Chauhan, K.; Paul, P. & Mukhim, C. (2016). Evaluation of enzyme treatment conditions on extraction of anthocyanins from prunus nepalensis l. International Journal of Biological Macromolecules, 92, 867–871. DOI: https://doi.org/10.1016/j.ijbiomac.2016.07.105
Vergara-Salinas, J. R.; Bulnes, P.; Zuniga, M.C.; Perez-Jimenez, J.; Torres, J.L.; Mateos-Martín, M.L.; Perez-Correa, J.R. (2013). Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry, 61, 6929–6936. DOI: https://doi.org/10.1021/jf4010143
Vázquez-Espinosa, M.; González De Peredo, A.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barbero, G. & Espada-Bellido, E. (2019). Assessment of ultrasound assisted extraction as an alternative method for the extraction of anthocyanins and total phenolic compounds from maqui berries (Aristotelia chilensis (mol.) stuntz). Agronomy, 9. DOI: https://doi.org/10.3390/agronomy9030148
Wang, Y.; Li, B.; Ma, Y.; Wang, X.; Zhang, X.; Zhang, Q. & Meng, X. (2016). Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in brl-3a cells: Oxidative stress, energy metabolism, hepatic function. Journal of Functional Foods, 24, 1–10. DOI: https://doi.org/10.1016/j.jff.2016.03.023
Wang, Y.; Zhao, L.; Zhang, R.; Yang, X.; Sun, Y.; Shi, L. & Xue, P. (2020). Optimization of ultrasound-assisted extraction by response surface methodology, antioxidant capacity, and tyrosinase inhibitory activity of anthocyanins from red rice bran. Food Science and Nutrition, 8, 921–932. DOI: https://doi.org/10.1002/fsn3.1371
Xie, J.; Xu, Y.; Shishir, M.; Zheng, X. & Chen, W. (2019). Green extraction of mulberry anthocyanin with improved stability using ß-cyclodextrin. Journal of the Science of Food and Agriculture, 99, 2494–2503. DOI: https://doi.org/10.1002/jsfa.9459
Yu, Y.G.; LIang, Z.M.; Wan, Z.C.; Liang, Y.S.; Yu, X.X.; Wang, C. & Zhang, Q. (2018). Purification and thermal stability of anthocyanin from hibiscus sabdariffa. Modern Food Science and Technology, 34, 58–66.
Zapata, I.; Álzate, A.; Zapata, K.; Arias, J.; Puertas, M. & Rojano, B. (2019). Effect of pH, temperature and time of extraction on the antioxidant properties of Vaccinium meridionale swartz. Journal of Berry Research, 9, 39–49. DOI: https://doi.org/10.3233/JBR-18299
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.