Desenvolvimento e caracterização de bala de pectina probiótica com jussara e maracujá

Autores

DOI:

https://doi.org/10.5902/2179460X84112

Palavras-chave:

Bala de pectina, Polpa de fruta, Resistência gastrointestinal

Resumo

Alimentos funcionais estão sendo desenvolvidos em diferentes indústrias. Este estudo avaliou a sobrevivência do probiótico Bacillus coagulans GBI-30 6086 em balas de pectina contendo polpas de jussara e maracujá. Análises físico-químicas, teor de antocianinas, capacidade antioxidante, qualidade microbiológica, viabilidade do probiótico e resistência gastrointestinal in vitro de B. coagulans foram realizadas durante 30 dias (28 °C). A aceitação sensorial foi feita após a elaboração das balas. A adição de probiótico e polpas de frutas não modificou as características físico-químicas das balas de pectina durante o armazenamento (p>0,05). O pH das balas foi de 3,77 e a acidez foi de aproximadamente 1,0% de ácido cítrico durante o armazenamento. A Aw foi de 0,70 e as balas apresentaram coloração vermelha/roxa, devido à adição da polpa de jussara. Valores de 45 mg.100g-1 e 360 ​​µM Trolox.g-1 foram encontrados para antocianinas e capacidade antioxidante, respectivamente, no final da vida de prateleira. O produto mostrou-se seguro para consumo e a viabilidade média de B. coagulans foi de 6,57 log UFC/g de 15 a 30 dias de armazenamento. Ao final da simulação gastrointestinal, 6,72 log UFC/g de B. coagulans permaneceram viáveis, indicando que as balas de pectina são potencialmente probióticas. As balas apresentaram excelente aceitação pelos consumidores. A inclusão do mix de frutas tropicais teve um impacto positivo na formulação das balas de pectina, reduzindo a necessidade de aditivos artificiais e combinando as características desejáveis ​​das frutas com o probiótico, aumentando o apelo funcional do produto.

Downloads

Não há dados estatísticos.

Biografia do Autor

Beatriz Veltre Costa, Universidade Estadual de Campinas (UNICAMP)

Graduação em Ciência de tecnologia de alimentos pelo IF Sudeste.

Isabela Valente de Oliveira, Instituto Federal do Sudeste de Minas Gerais

Graduação em Ciência e Tecnologia de Alimentos pelo IF Sudeste.

Jéssica Soares Miranda, Instituto Federal do Sudeste de Minas Gerais

Mestrado em Ciência e Tecnoloogia de Alimentos pelo IFSudeste.

Diana Clara Nunes de Lima, Federal Center for Technological Education Celso Suckow da Fonseca

Doutora em Tecnologia de Alimentos pela UNICAMP.

Wellingta Cristina Almeida do Nascimento Benevenuto, Instituto Federal do Sudeste de Minas Gerais

Doutora em Produção Vegetal pela Universidade Estadual do Norte Fluminense Darcy Ribeiro.

Maurilio Lopes Martins, Instituto Federal do Sudeste de Minas Gerais

Doutorado em Microbiologia Agrícola pela Universidade Federal de Viçosa.

Bruno Ricardo de Castro Leite Júnior, Universidade Federal de Viçosa

Doutorado em Tecnologia de Alimentos pela Universidade Estadual de Campinas.

Roselir Ribeiro da Silva, Instituto Federal do Sudeste de Minas Gerais

Doutorado em Ciências Ambientais pela Universidade Federal de Goiás.

Eliane Mauricio Furtado Martins, Instituto Federal do Sudeste de Minas Gerais

Doutorado em Ciência e Tecnologia de Alimentos pela Universidade Federal de Viçosa.

Referências

Altinok, E., Palabiyik, I., Gunes, R., Toker, O. S., Konar, N., & Kurultay, S. (2020). Valorisation of grape by products as a bulking agent in soft candies: Effect of particle size. LWT - Food Science and Technology, 118 (108776), 1-7.https://doi.org/10.1016/j.lwt.2019.108776 DOI: https://doi.org/10.1016/j.lwt.2019.108776

Andrews, W.H. et al. (2001). Salmonella. In Downes, F.P., & Ito, K. (Eds), Compendium of Methods for the Microbiological Examination of Foods (4th ed., pp.357-380). Washington, DC: American Public Health Association – APHA.

Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A., Tsakalidou, E., Nychas, G., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33(2), 282-291. https://doi.org/10.1016/j.fm.2012.10.005 DOI: https://doi.org/10.1016/j.fm.2012.10.005

A.O.A.C. Association of Official Analytical Chemists. 20.ed. Rockville, 2016.

Avelar, M. H. M., & Efraim, P. (2020). Alginate/pectin cold-set gelation as a potential sustainable method for jelly candy production. LWT – Food Science and Technology, 123, 1-9. https://doi.org/10.1016/j.lwt.2020.109119 DOI: https://doi.org/10.1016/j.lwt.2020.109119

Bastos, R. D. S., Oliveira, K. K. G., Melo, E. D. A., & Lima, V. L. A. G. (2017). Stability of anthocyanins from agroindustrial residue of Isabel grape grown in São Francisco Valley, Brazil. Revista brasileira de fruticultura, 39(1), 1-8. https://doi.org/10.1590/0100-29452017564 DOI: https://doi.org/10.1590/0100-29452017564

Bendani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara onLactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology, 34(2), 382-389. https://doi.org/10.1016/j.fm.2013.01.012 DOI: https://doi.org/10.1016/j.fm.2013.01.012

Bernat, N., Cháfer, M., Chiralt, A., & González-Martínez, C. (2014). Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Science and Technology International, 21(6), 440-453. https://doi.org/10.1177/1082013214543705. DOI: https://doi.org/10.1177/1082013214543705

Bicudo, M. O. P., Ribani, R. H., & Beta, T. (2014). Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis M.) along the on-tree ripening process. Plant Food for Human Nutrition, 69(2), 142- 147. https://doi.org/10.1007/s11130-014-0406-0. DOI: https://doi.org/10.1007/s11130-014-0406-0

Blando, F., Gerardi, C., & Nicoletti, I. (2004). Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods. Journal of Biomedicine and Biotechnology, 2004(5), 253-258. https://doi.org/10.1155/S1110724304404136 DOI: https://doi.org/10.1155/S1110724304404136

Borges, G. S. C., Gonzaga, L. V., Jardini, F. A., Mancini Filho, J., Heller, M., Micke, G., Costa, A. C. O., & Fett, R. (2013). Protective effect of Euterpe edulis M. on Vero cell culture and antioxidante evaluation based on phenolic using HPLC – ESIMS/MS. Food Research International, 51(1), 363-369. https://doi.org/10.1016/j.foodres.2012.12.035 DOI: https://doi.org/10.1016/j.foodres.2012.12.035

Botta, C., Langerholc, T., Cencič, A., & Cocolin, L. (2013). In Vitro Selection and Characterization of New Probiotic Candidates from Table Olive Microbiota. PLoS ONE, 9(4), e94457. https://doi.org/10.1371/journal.pone.0094457 DOI: https://doi.org/10.1371/journal.pone.0094457

Bracale, R., & Vaccaro, C. M. (2020). Changes in food choice following restrictive measures due to Covid-19. Nutrition, Metabolism, and Cardiovascular Diseases, 30(9), 1423-1426. https://doi.org/10.1016/j.numecd.2020.05.027 DOI: https://doi.org/10.1016/j.numecd.2020.05.027

Burns, P., Lafferriere, L., Vinderola, G., & Reinheimer, J. (2014). Influence of dairy practices on the capacity of probiotic bacteria to overcome simulated gastric digestion. International Journal of Dairy Technology, 67(3), 448-457. https://doi.org/10.1111/1471-0307.12141 DOI: https://doi.org/10.1111/1471-0307.12141

Charoen, R., Savedboworn, W., Phuditcharnchnakun, S., & Khuntaweetap, T. (2015). Development of antioxidant gummy jelly candy supplemented with psidium guajava leaf extract. Applied Science and Engineering Progress, 8(2), 145-151. https://doi.org/10.14416/j.ijast.2015.02.002 DOI: https://doi.org/10.14416/j.ijast.2015.02.002

Demars, L. L., & Ziegler, G. R. (2001). Texture and structure of gelatin/ pectin-based gummy confections. Food Hydrocolloids, 15(4), 643-653. https://doi.org/10.1016/S0268-005X(01)00044-3 DOI: https://doi.org/10.1016/S0268-005X(01)00044-3

De Moura, D. C., Berling, C. L., Garcia, A. O., Queiroz, M. B., Alvim, I. D., & Hubinger, M. D. (2019). Release of anthocyanins from the hibiscos exract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International, 121, 542-552. https://doi.org/10.1016/j.foodres.2018.12.010 DOI: https://doi.org/10.1016/j.foodres.2018.12.010

Espírito-Santo, A. P., Perego, P., Converti, A., & Oliveira, M. N. (2011). Influence of food matrices on probiotic viability—A review focusing on the fruity bases. Trends in Food Science and Technology, 22(7), 377-385. https://doi.org/10.1016/j.tifs.2011.04.008 DOI: https://doi.org/10.1016/j.tifs.2011.04.008

Ergun, R., Lietha, R., & Hartel, R. W. (2010). Moisture and shelf life in sugar confections. Critical Reviews in Food Science and Nutrition, 50(2), 162–192. https://doi.org/10.1080/10408390802248833 DOI: https://doi.org/10.1080/10408390802248833

Evelyn, & Silva, F. V. M. (2019). Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends in Food Science & Technology, 88, 143-156. https://doi.org/10.1016/j.tifs.2019.03.016 DOI: https://doi.org/10.1016/j.tifs.2019.03.016

F.A.O. Food And Agricultive Organization Of United Nations (FAO)/World Health Organization (WHO). Probióticos en los alimentos: Propiedades saludables y nutricionales y directrices para la evaluación. Estudio fao alimentación y nutrición. 2006.

Garcia, T. (2000). Analysis of gelatin-based confections. The Manufacturing Confectioner, 80(6), 93-101.

Habilla, C., & Cheng, L. H. (2015). Quality of jelly candy made of acid-thinned starch added with different non-starch polysaccharides. Journal of Food Research and Technology, 3(1), 14-22.

Hong, H. A.; Duc L. H.; Andcutting S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiology, 29(4), 813–835. https://doi.org/10.1016/j.femsre.2004.12.001. DOI: https://doi.org/10.1016/j.femsre.2004.12.001

Júnior, A. C. D., Almeida, S. F., Oliveira, E. N. A., Freitas, P. V. C., Feitosa, B. F., & Souza, R. L. A. (2020). Development and stability of candy in soursop mass. Ciência e Natura, 42(12), 1-14. https://doi.org/10.5902/2179460X43168 DOI: https://doi.org/10.5902/2179460X43168

Khan, M. A. B. & Smith, J. E. M. (2020). “Covibesity,” a new pandemic. Obesity Medicine, 19, 100282. https://doi.org/10.1016/j.obmed.2020.100282 DOI: https://doi.org/10.1016/j.obmed.2020.100282

Konar, N., Gunes, R., Palabiyik, I., & Toker, O. S. (2022). Health conscious consumers and sugar confectionery: Present aspects and projections. Trends in Food Science & Technology, 123, 57-68. https://doi.org/10.1016/j.tifs.2022.02.001 DOI: https://doi.org/10.1016/j.tifs.2022.02.001

Kornacki, J.L., & Johnson, J.L. (2001). Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. In Downes, F.P. & Ito, K. (Eds), Compendium of Methods for the Microbiological Examination of Foods (4th ed., pp. 69–82). Washington, DC: American Public Health Association – APHA. DOI: https://doi.org/10.2105/9780875531755ch08

Laguna, L., Fiszman, S., Puerta, P., Chaya, C., & Tárrega, A. (2020). The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Quality and Preference, 86, 104028. https://doi.org/10.1016/j.foodqual.2020.104028 DOI: https://doi.org/10.1016/j.foodqual.2020.104028

Lees, D.H., & Francis, F.J. (1972). Standardization of pigment analyses in cranberries. Hort Science, 7(1), 83-84. https://doi.org/10.21273/HORTSCI.7.1.83 DOI: https://doi.org/10.21273/HORTSCI.7.1.83

Madureira, A.R., Amorim, M., Gomes, A.M., Pintado, M., & Malcata, F.X. (2011). Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44(1), 465-470. https://doi.org/10.1016/j.foodres.2010.09.010 DOI: https://doi.org/10.1016/j.foodres.2010.09.010

Martins, E.M.F., Ramos, A.M., Martins, M.L., & Júnior, B.R.C.L. (2016). Fruit salad as a new vehicle for probiotic bacteria. Food Science and Technology, 36, 540-548. https://doi.org/10.1590/1678-457X.03316 DOI: https://doi.org/10.1590/1678-457X.03316

Martins, E.M.F., Ramos, A. M., Vanzela, E. S. L., Stringheta, P. C., Pinto, C. L. De O., & Martins, J. M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770. https://doi.org/10.1016/j.foodres.2013.01.047 DOI: https://doi.org/10.1016/j.foodres.2013.01.047

Minekus, M., Alminger, M,, Alvito, P., Balance, S., Bohn, T., Bourlieu, C., Carrière, F., … & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J DOI: https://doi.org/10.1039/C3FO60702J

Miranda, J.S., Costa, I.V., Oliveira, I.V., Lima, D.C.N., Martins, E.M.F., Leite Júnior, B.R.C., ... & Martins, M.L. (2020). Probiotic jelly candies enriched with native Atlantic Forest fruits and Bacillus coagulans GBI-30 6086. LWT- Food Science and Technology, 126, 109275. https://doi.org/10.1016/j.lwt.2020.109275 DOI: https://doi.org/10.1016/j.lwt.2020.109275

Oliveira, C.F. (2015). Aplicação de diferentes tecnologias na extração de pectina presente na casca do maracujá. [Tese Doutorado em Engenharia, Universidade Federal do Rio Grande do Sul]. Repositório Institucional da UFRGS.

Perricone, M., Bevilacqua, A., Altieri, C., Sinigaglia, M., & Corbo, M.R. (2015). Challenges for the production of probiotic fruit juices. Beverages, 1(2), 95-103. https://doi.org/10.3390/beverages1020095 DOI: https://doi.org/10.3390/beverages1020095

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9), 1231-123. https://doi.org/10.1016/s0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

Riedel, R., Böhme, B., & Rohm, H. (2015). Development of formulations for reduced-sugar and sugar-free agar-based fruit jellies. International Journal of Food Science and Technology, 50(6), 1338-1344. https://doi.org/10.1111/ijfs.12787 DOI: https://doi.org/10.1111/ijfs.12787

Rigueira, D.M.G., Rocha, P.L.B., & Mariano-Neto, E. (2013). Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodiversity & Conservation, 22, 3141-3163. https://doi.org/10.1007/s10531-013-0575-4 DOI: https://doi.org/10.1007/s10531-013-0575-4

Rotili, M.C.C., Coutro, S., Celant, V.M., Vorpagel, J.A., Barp, F.K., Salibe, A.B., & Braga, G.C. (2013). Composition, antioxidante capacity and quality of yellow passion fruit during storage. Semina: Ciências Agrárias, 31, 227-240. https://doi.org/10.5433/1679-0359.2013v34n1p227 DOI: https://doi.org/10.5433/1679-0359.2013v34n1p227

Schieber, A., Stintzing, F.C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Scienceand Technology, 12(11), 401–413. https://doi.org/10.1016/S0924-2244(02)00012-2 DOI: https://doi.org/10.1016/S0924-2244(02)00012-2

Sessler, T., Weiss, J., & Vodovotz, Y. (2013). Influence of pH and soy protein isolate addition on the physicochemical properties of functional grape pectin confections. Food Hydrocolloids, 32(2), 294-302. https://doi.org/10.1016/j.foodhyd.2013.01.013 DOI: https://doi.org/10.1016/j.foodhyd.2013.01.013

Silva, L.B., Queinoz, M.B., Fadini, A.L., Fonseca, R.C.C., Germer, S.P.M. & Efraim, P. (2016). Chewy candy as a model system to study the influence of polyols and fruit pulp (açaí) on texture and sensorial properties. LWT – Food Science and Technology, 65, 268-274. https://doi.org/10.1016/j.lwt.2015.08.006 DOI: https://doi.org/10.1016/j.lwt.2015.08.006

Souza, A.M., Bezerra, I.W.L., Pereira, G.S., Torres, K.G., Costa, R.M., & Oliveira, A.G. Relationships between motivations for food choices and consumption of food groups: A prospective cross-sectional survey in manufacturing workers in Brazil. Nutrients, 12(5), 1490, 2020. https://doi.org/10.3390/nu12051490 DOI: https://doi.org/10.3390/nu12051490

Toft, K., Grasdalen, H., & Smidsrød, O. (1986). Synergistic gelation of alginates and pectins. In Marshall, L.F. & Joseph, J.J. (Eds). Chemistry and function of pectins (pp.117-132). American Chemical Society. DOI: https://doi.org/10.1021/bk-1986-0310.ch010

Utomo, B.S.B., Darmawan, M., Hakim, A.R., & Ardi, D.T. (2014). Physicochemical properties and sensory evaluation of jelly candy made from different ratio of k-carrageenan and konjac. Squalen Bulletin of Marine & Fisheries Postharvest & Biotechnology, 9, 25-34. https://doi.org/10.15578/squalen.v9i1.93 DOI: https://doi.org/10.15578/squalen.v9i1.93

Zeraik, M.L., Pereira, C.A., Zuin, V.G., & Yariwake, J.H. (2010). Passion fruit: a functional food? Brazilian Journal of Pharmacognosy, 20(3), 459-471. https://doi.org/10.1590/S0102-695X2010000300026 DOI: https://doi.org/10.1590/S0102-695X2010000300026

Publicado

2024-11-22

Como Citar

Costa, B. V., Oliveira, I. V. de, Miranda, J. S., Lima, D. C. N. de, Benevenuto, W. C. A. do N., Martins, M. L., Leite Júnior, B. R. de C., Silva, R. R. da, & Martins, E. M. F. (2024). Desenvolvimento e caracterização de bala de pectina probiótica com jussara e maracujá. Ciência E Natura, 46, e84112. https://doi.org/10.5902/2179460X84112

Edição

Seção

Química