Nanoemulsões de compostos bioativos de base de plantas com aplicações antimicrobianas: uma revisão

Autores

DOI:

https://doi.org/10.5902/2179460X74325

Palavras-chave:

Atividade antimicrobiana, Nanopartículas, Produtos alternativos

Resumo

A busca por agentes antimicrobianos alternativos vem atraindo crescente interesse científico. Os produtos naturais de origem vegetal são fontes de diversas substâncias com atividades biológicas comprovadas, incluindo atividade antimicrobiana. O encapsulamento desses produtos na forma de nanoemulsão busca superar problemas inerentes a esses produtos, como instabilidade e degradação. Com base nessas considerações, realizamos um levantamento bibliográfico de nanoemulsões produzidas a partir de substâncias derivadas de plantas, como óleos essenciais e extratos, com potencial antimicrobiano, com foco nas atividades antibacteriana, antifúngica e antiviral. Foram utilizados artigos e documentos publicados em periódicos de relevância científica, bem como palavras-chave classificadas nos Descritores em Ciências da Saúde. Todos os documentos relevantes para esta pesquisa relataram que as nanoemulsões carregadas com óleos essenciais e extratos vegetais de diferentes espécies botânicas apresentaram atividade antimicrobiana in vitro contra diferentes microrganismos de importância médica, além de potencializar os efeitos antimicrobianos desses bioprodutos. Portanto, antimicrobianos nanoestruturados com óleos essenciais e extratos de plantas podem ser considerados opções de tratamento para doenças microbianas: devido às suas propriedades físico-químicas, atuam como melhores veículos de entrega de produtos naturais com boa biodisponibilidade, reduzindo a toxicidade e prolongando a vida útil desses antimicrobianos naturais, melhorando assim o tratamento de doenças humanas infecciosas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Júlio César Sousa Prado, Universidade Federal do Ceará

Biólogo, Mestrando em Ciências da Saúde pela Universidade Federal do Ceará (UFC).

Guilherme Mendes Prado, Universidade Federal do Ceará

Farmacêutico, Mestre em Ciências da Saúde pela Universidade Federal do Ceará (UFC).

Francisca Lidiane Linhares Aguiar, Universidade Federal do Ceará

Bióloga, Doutora em Ciências Farmacêuticas pela Universidade Federal do Ceará (UFC).

Andrea Maria Neves, Universidade Estadual do Ceará

Bióloga, Doutora em Biotecnologia pela Universidade Estadual do Ceará (UECE).

Joice Farias do Nascimento, Universidade Estadual do Ceará

Química, Mestranda em Ciências Naturais pela Universidade Estadual do Ceará (UECE).

Flávia Oliveira Monteiro da Silva Abreu, Universidade Estadual do Ceará

Doutora em Engenharia de Minas, Metalúrgica e Materiais. Professora da Universidade Estadual do Ceará (UECE).

Raquel Oliveira dos Santos Fontenelle, Universidade Estadual Vale do Acaraú

Doutora em Ciências Veterinárias. Professora da Universidade Estadual Vale do Acaraú (UVA), Universidade Estadual do Ceará (UECE) e Universidade Federal do Ceará (UFC).

Referências

ABREU, F. O. M. D. S.; COSTA, E. F.; CARDIAL, M. R. L.; ANDRÉ W. P. P. Polymeric nanoemulsions enriched with Eucalyptus citriodora essential oil. Polímeros, 30, 2022. https://doi.org/10.1590/0104-1428.00920 DOI: https://doi.org/10.1590/0104-1428.00920

ACEVEDO-FANI, A.; SOLIVA-FORTUNY, R.; MARTÍN-BELLOSO, O. Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science & Technology, 60, 12-22, 2017. https://doi.org/10.1016/j.tifs.2016.10.027 DOI: https://doi.org/10.1016/j.tifs.2016.10.027

AL‐ADHAM, I. S.; JABER, N.; AL‐REMAWI, M.; AL‐AKAYLEH, F.; AL‐KAISSI, E.; ALI AGHA, A. S. A.; ... & COLLIER, P. J. A review of the antimicrobial activity of thermodynamically stable microemulsions. Letters in Applied Microbiology, 75(3), 537-547, 2022. https://doi.org/10.1111/lam.13570 DOI: https://doi.org/10.1111/lam.13570

ANTON, N.; BENOIT, J. P.; SAULNIER, P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of controlled release, 128(3), 185-199, 2008. https://doi.org/10.1016/j.jconrel.2008.02.007 DOI: https://doi.org/10.1016/j.jconrel.2008.02.007

AZEVEDO, M. M.; ALMEIDA, C. A.; CHAVES, F. C.; RICCI-JÚNIOR, E.; GARCIA, A. R.; RODRIGUES, I. A.; ... ALVIANO, D. S. Croton cajucara essential oil nanoemulsion and its antifungal activities. Processes, 9(11), 2021. https://doi.org/10.3390/pr9111872 DOI: https://doi.org/10.3390/pr9111872

BAKER, J. R.; HAMOUDA, T.; SHIH, A.; MYC, A. US Patent No. 6,559,189, 2003.

BALDIM, I.; PAZIANI, M. H.; GRIZANTE-BARIÃO, P. H.; KRESS, M. R. V. Z.; OLIVEIRA, W. P. Nanostructured lipid carriers loaded with Lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics, 14(1), 180, 2022. https://doi.org/10.3390/pharmaceutics14010180 DOI: https://doi.org/10.3390/pharmaceutics14010180

BAZANA, M. T.; CODEVILLA, C. F.; MENEZES, C. R; Nanoencapsulation of bioactive compounds: Challenges and perspectives. Current opinion in food science, 26, 47-56, 2019. https://doi.org/10.1016/j.cofs.2019.03.005 DOI: https://doi.org/10.1016/j.cofs.2019.03.005

BEDIN, A. C. Nanoemulsões contendo benzoilmetronidazol: desenvolvimento, caracterização e estudo de liberação in vitro, 2011.

BEDOYA-SERNA, C. M.; DACANAL, G. C.; FERNANDES, A. M.; PINHO, S. C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian journal of microbiology, 49, 929-935, 2018. https://doi.org/10.1016/j.bjm.2018.05.004 DOI: https://doi.org/10.1016/j.bjm.2018.05.004

BHARGAVA, K.; CONTI, D. S.; ROCHA, S. R.; ZHANG, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food microbiology, 47, 69-73, 2015. https://doi.org/10.1016/j.fm.2014.11.007 DOI: https://doi.org/10.1016/j.fm.2014.11.007

BOIRE, N. A.; RIEDEL, S.; PARRISH, N. M. Essential oils and future antibiotics: new weapons against emerging ‘superbugs’. J Anc Dis Prev Rem, 1(2), 105, 2013. http://dx.doi.org/10.4172/jadpr.1000105 DOI: https://doi.org/10.4172/2329-8731.1000105

BOTELHO, B. O.; MELO, D. C. A.; FONTES, C.; QUEIROZ, V. T.; COSTA, A. V.; MARTINS, I. V. F. Aplicação de nanoemulsões na agricultura e medicina veterinária. TÓPICOS ESPECIAIS EM CIÊNCIA ANIMAL VII, 143, 2018.

CHINNAIYAN, S. K.; PANDIYAN, R.; NATESAN, S.; CHINDAM, S.; GOUTI, A. K.; SUGUMARAN, A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—Evaluation of its antibacterial and anti-biofilm potential. Journal of Drug Delivery Science and Technology, 68, 103129, 2022. https://doi.org/10.1016/j.jddst.2022.103129 DOI: https://doi.org/10.1016/j.jddst.2022.103129

D’AGOSTINO, M.; TESSE, N.; FRIPPIAT, J. P.; MACHOUART, M.; DEBOURGOGNE, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules, 24(20), 3713, 2019. https://doi.org/10.3390/molecules24203713 DOI: https://doi.org/10.3390/molecules24203713

DAMANI, M. H.; PARTOVI, R.; SHAHAVI, M. H.; AZIZKHANI, M. Nanoemulsions of Trachyspermum copticum, Mentha pulegium and Satureja hortensis essential oils: formulation, physicochemical properties, antimicrobial and antioxidant efficiency. Journal of Food Measurement and Characterization, 16(3), 1807-1819, 2020. https://doi.org/10.1007/s11694-022-01294-5 DOI: https://doi.org/10.1007/s11694-022-01294-5

DANIELLI, L. J.; REIS, M.; BIANCHINI, M.; CAMARGO, G. S.; BORDIGNON, S. A.; GUERREIRO, I. K.; ... APEL, M. A. Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial crops and products, 50, 23-28, 2013. https://doi.org/10.1016/j.indcrop.2013.07.027 DOI: https://doi.org/10.1016/j.indcrop.2013.07.027

DAS, S.; HORVÁTH, B.; ŠAFRANKO, S.; JOKIĆ, S.; SZÉCHENYI, A;. KŐSZEGI, T. Antimicrobial activity of chamomile essential oil: Effect of different formulations. Molecules, 24(23), 4321, 2019. https://doi.org/10.3390/molecules24234321 DOI: https://doi.org/10.3390/molecules24234321

DAS, S.; SINGH, V. K.; DWIVEDY, A. K.; CHAUDHARI, A. K.; UPADHYAY, N.; SINGH, P.; ... DUBEY, N. K. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International journal of biological macromolecules, 133, 294-305, 2019. https://doi.org/10.1016/j.ijbiomac.2019.04.070 DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.070

DAS, S.; VÖRÖS-HORVÁTH., B; BENCSIK., T; MICALIZZI, G.; MONDELLO, L.; HORVÁTH, G.; ... SZÉCHENYI, A. Antimicrobial activity of different Artemisia essential oil formulations. Molecules, 25(10), 2390, 2020. https://doi.org/10.3390/molecules25102390 DOI: https://doi.org/10.3390/molecules25102390

DELSHADI, R.; BAHRAMI, A.; MCCLEMENTS, D. J.; MOORE, M. D.; WILLIAMS, L. Development of nanoparticle-delivery systems for antiviral agents: A review. Journal of Controlled Release, 331, 30-44, 2021. https://doi.org/10.1016/j.jconrel.2021.01.017 DOI: https://doi.org/10.1016/j.jconrel.2021.01.017

DONSÌ, F; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. Journal of biotechnology, 233, 106-120, 2016. https://doi.org/10.1016/j.jbiotec.2016.07.005 DOI: https://doi.org/10.1016/j.jbiotec.2016.07.005

EL-KADER, A.; ABU HASHISH, H. Encapsulation techniques of food bioproduct. Egyptian Journal of Chemistry, 63(5), 1881-1909, 2020. https://doi.org/10.21608/ejchem.2019.16269.1993 DOI: https://doi.org/10.21608/ejchem.2019.16269.1993

EL-NAGGAR, M. E.; SOLIMAN, R. A.; MORSY, O. M.; ABDEL-AZIZ, M. S. Nanoemulsion of Capsicum fruit extract as an eco-friendly antimicrobial agent for production of medical bandages. Biocatalysis and Agricultural Biotechnology, 23, 101516, 2020. https://doi.org/10.1016/j.bcab.2020.101516 DOI: https://doi.org/10.1016/j.bcab.2020.101516

FERREIRA, C. D.; NUNES, I. L. Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale research letters, 14, 1-13., 2019. https://doi.org/10.1186/s11671-018-2829-2 DOI: https://doi.org/10.1186/s11671-018-2829-2

FRANZOL, A.; REZENDE, M. C. Estabilidade de emulsões: um estudo de caso envolvendo emulsionantes aniônico, catiônico e não-iônico. Polímeros, 25, 1-9, 2015. https://doi.org/10.1590/0104-1428.1669 DOI: https://doi.org/10.1590/0104-1428.1669

GALIE, S.; GARCÍA-GUTIÉRREZ, C.; MIGUÉLEZ, E. M.; VILLAR, C. J.; LOMBÓ, F. Biofilms in the food industry: health aspects and control methods. Frontiers in microbiology, 9, 898, 2018. https://doi.org/10.3389/fmicb.2018.00898 DOI: https://doi.org/10.3389/fmicb.2018.00898

GHANI, S.; BARZEGAR, H.; NOSHAD, M.; HOJJATI, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. International journal of biological macromolecules, 112, 197-202, 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.145 DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.145

GHAZY, O. A.; FOUAD, M. T.; SALEH, H. H.; KHOLIF, A. E.; MORSY, T. A. Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food chemistry, 341, 128259, 2021. https://doi.org/10.1016/j.foodchem.2020.128259 DOI: https://doi.org/10.1016/j.foodchem.2020.128259

GUERRA-ROSAS, M. I.; MORALES-CASTRO, J.; OCHOA-MARTÍNEZ, L. A.; SALVIA-TRUJILLO, L.; MARTÍN-BELLOSO, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438-446, 2016. https://doi.org/10.1016/j.foodhyd.2015.07.017 DOI: https://doi.org/10.1016/j.foodhyd.2015.07.017

HARUN, S. N.; NORDIN, S. A.; ABD GANI, S. S.; SHAMSUDDIN, A. F.; BASRI, M.; BASRI, H. B. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. International journal of nanomedicine, 13, 2571, 2018. https://doi.org/10.2147/IJN.S151788 DOI: https://doi.org/10.2147/IJN.S151788

HASSAN, K. A.; MUJTABA, M. A. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205, 2019. https://doi.org/10.3934/agrfood.2019.1.194 DOI: https://doi.org/10.3934/agrfood.2019.1.194

HERCULANO, E. D.; PAULA, H. .C; FIGUEIREDO, E. A.; DIAS, F. G.; PEREIRA, V. D. A. Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Science and Technology, 61(2), 484-491, 2015. https://doi.org/10.1016/j.lwt.2014.12.001 DOI: https://doi.org/10.1016/j.lwt.2014.12.001

ISAH, T. Stress and defense responses in plant secondary metabolites production. Biological research, 52, 2019. https://dx.doi.org/10.1186/s40659-019-0246-3 DOI: https://doi.org/10.1186/s40659-019-0246-3

IVANOV, M.; ĆIRIĆ, A.; STOJKOVIĆ, D. Emerging antifungal targets and strategies. International Journal of Molecular Sciences, 23(5), 2756, 2022. https://doi.org/10.3390/ijms23052756 DOI: https://doi.org/10.3390/ijms23052756

JEONG, S. H.; HUH, K. M.; PARK, K. Hydrogel drug delivery systems. In Polymers in drug delivery (pp. 49-62), 2006. DOI: https://doi.org/10.1201/9781420021677-5

JEROBIN, J.; MAKWANA, P.; SURESH KUMAR, R. S.; SUNDARAMOORTHY, R.; MUKHERJEE, A.; CHANDRASEKARAN, N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. International journal of nanomedicine, 10(sup2), 77-86, 2015. DOI: https://doi.org/10.2147/IJN.S79983

KALEELULLAH, R. A.; GARUGULA, N. Teratogenic Genesis in Fetal Malformations. Cureus, 13(2), 2021. https://doi.org.10.7759/cureus.13149 DOI: https://doi.org/10.7759/cureus.13149

KALOYANIDES, G. J. Antibiotic-related nephrotoxicity. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association, 9, 130-134, 1994.

KARIM, A.; REHMAN, A.; FENG, J.; NOREEN, A.; ASSADPOUR, E.; KHARAZMI, M. S.; JAFARI, S. M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Advances in Colloid and Interface Science, 102744, 2022. https://doi.org/10.1016/j.cis.2022.102744 DOI: https://doi.org/10.1016/j.cis.2022.102744

KEMBER, M.; GRANDY, S.; RAUDONIS, R.; CHENG, Z. Non-canonical host intracellular niche links to new antimicrobial resistance mechanism. Pathogens, 11(2), 220, 2022. https://doi.org/10.3390/pathogens11020220 DOI: https://doi.org/10.3390/pathogens11020220

KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19, 2018. https://doi.org/10.1016/j.fbp.2018.05.001 DOI: https://doi.org/10.1016/j.fbp.2018.05.001

KRISHNAMOORTHY, R.; GASSEM, M. A.; ATHINARAYANAN, J.; PERIYASAMY, V. S.; PRASAD, S.; ALSHATWI, A. A. Antifungal activity of nanoemulsion from Cleome viscosa essential oil against food-borne pathogenic Candida albicans. Saudi Journal of Biological Sciences, 28(1), 286-293, 2021. https://doi.org/10.1016/j.sjbs.2020.10.001 DOI: https://doi.org/10.1016/j.sjbs.2020.10.001

KSHIRSAGAR, N. A.; PANDYA, S. K.; KIRODIAN, B. G.; SANATH, S. Liposomal drug delivery system from laboratory to clinic. Journal of postgraduate medicine, 51(5), 5, 2015.

KUMARm, N.; MANDAL, A. Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy & fuels, 32(6), 6452-6466, 2018. https://doi.org/10.1021/acs.energyfuels.8b00043 DOI: https://doi.org/10.1021/acs.energyfuels.8b00043

KUMAR, M. N. R. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27, 2000. https://doi.org/10.1016/S1381-5148(00)00038-9 DOI: https://doi.org/10.1016/S1381-5148(00)00038-9

LEÃO, K. M. M.; REIS, L. V. C.; SPERANZA, P.; RODRIGUES, A. P.; RIBEIRO, A. P. B.; MACEDO, J. A.; MACEDO, G. A. Physicochemical characterization and antimicrobial activity in novel systems containing buriti oil and structured lipids nanoemulsions. Biotechnology reports, 24, e00365, 2019. https://doi.org/10.1016/j.btre.2019.e00365 DOI: https://doi.org/10.1016/j.btre.2019.e00365

LIMA, T. P.; SOUSA, T. L.; OLIVEIRA, J. P. M.; FELIZARDO, M. G. A. C..; EVERTON, G. O; MOUCHREK FILHO, V. E. Chemical profile, thermodynamic stability and fungicidal activity of the nanoemulsion incorporated with essential oil and hydroalcoholic extract of Syzygium aromaticum (L.) Merr. & LM. Perry. Ciência e Natura, 43, 77, 2021. https://doi.org/10.5902/2179460X63929 DOI: https://doi.org/10.5902/2179460X63929

MACCELLI, A.; VITANZA, L.; IMBRIANO, A.; FRASCHETTI, C.; FILIPPI, A.; GOLDONI, P.; ... RINALDI, F. Satureja montana L. Essential oils: Chemical profiles/phytochemical screening, antimicrobial activity and o/w nanoemulsion formulations. Pharmaceutics, 12(1), 7, 2019. https://doi.org/10.3390/pharmaceutics12010007 DOI: https://doi.org/10.3390/pharmaceutics12010007

MADIGAN, M. T.; MARTINKO, J. M.; BENDER, K. S.; BUCKLEY, D. H.; STAHL, D. A. Brock's Microbiology-14ª Edition. Artmed Publisher, 2016.

MAHMOUD, D. B.; ISMAIL, W. M.; MOATASIM, Y.; KUTKAT, O.; ELMESHAD, A. N.; EZZAT, S. M.; ... MOSTAFA, A. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: In silico and in vitro studies. Journal of Drug Delivery Science and Technology, 66, 102845, 2021. https://doi.org/10.1016/j.jddst.2021.102845 DOI: https://doi.org/10.1016/j.jddst.2021.102845

MANSOUR, K. A..; EL-NEKETI, M; LAHLOUB, M. F.; ELBERMAWI, A. Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects. Molecules, 27(11), 3639, 2022. https://doi.org/10.3390/molecules27113639 DOI: https://doi.org/10.3390/molecules27113639

MAPHOSA, Y.; JIDEANI, V. A. Factors affecting the stability of emulsions stabilised by biopolymers. Science and technology behind Nanoemulsions, 65, 2018. https://doi.org/10.5772/intechopen.75308 DOI: https://doi.org/10.5772/intechopen.75308

MARINKOVIĆ, J.; BOŠKOVIĆ, M.; TASIĆ, G.; VASILIJEVIĆ, B.; MARKOVIĆ, D.; MARKOVIĆ, T.; NIKOLIĆ, B. Cymbopogon martinii essential oil nanoemulsions: Physico-chemical characterization, antibacterial and antibiofilm potential against Enterococcus faecalis. Industrial Crops and Products, 187, 115478, 2022. https://doi.org/10.1016/j.indcrop.2022.115478 DOI: https://doi.org/10.1016/j.indcrop.2022.115478

MOAZENI, M.; DAVARI, A.; SHABANZADEH, S.; AKHTARI, J.; SAEEDI, M.; MORTYEZA-SEMNANI, K.; ... NOKHODCHI, A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine, 28, 100452, 2021. https://doi.org/10.1016/j.hermed.2021.100452 DOI: https://doi.org/10.1016/j.hermed.2021.100452

MOGHIMI, R.; ALIAHMADI, A.; MCCLEMENTS, D. J.; RAFATI, H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT-Food Science and Technology, 71, 69-76, 2016. https://doi.org/10.1016/j.lwt.2016.03.018 DOI: https://doi.org/10.1016/j.lwt.2016.03.018

MOSTAFA, A. A.; AL-ASKAR, A. A.; ALMAARY, K. S.; DAWOUD, T. M.; SHOLKAMY, E. N.; BAKRI, M. M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361-366, 2018. https://doi.org/10.1016/j.sjbs.2017.02.004 DOI: https://doi.org/10.1016/j.sjbs.2017.02.004

NABILA, N.; SUADA, N. K.; DENIS, D.; YOHAN, B.; ADI, A. C.; VETERINI, A. S.; ... RACHMAWATI, H. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharmaceutical Nanotechnology, 8(1), 54-62, 2020. https://doi.org/10.2174/2211738507666191210163408 DOI: https://doi.org/10.2174/2211738507666191210163408

NASCIMENTO, J. F.; COSTA, E. F.; ABREU, F. O. M. S. CARACTERIZAÇÕES DE NANOEMULSÕES DE ALGINATO DE SÓDIO COM ÓLEO ESSENCIAL DE Eucalyptus citriodora. Revista Coleta Científica, 4(8), 15-22, 2020. https://doi.org/10.7910/DVN/7QGVTR

NIELSEN, S. F.; BOESEN, T.; LARSEN, M.; SCHØNNING, K.; KROMANN, H. Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic& medicinal chemistry, 12(11), 3047-3054, 2004. https://doi.org/10.1016/j.bmc.2004.03.071 DOI: https://doi.org/10.1016/j.bmc.2004.03.071

OKONKWO, S.; EMEJE, M.; PETERS, O.; OKHALE, S. Extraction and Nanoencapsulation of Ocimum Gratissimum Leaf Extract and Its Anti-Mycobacterial Activities. Extraction, 12(2), 2020. https://doi.org/10.7176/CMR/12-2-03 DOI: https://doi.org/10.7176/CMR/12-2-03

OUN, R.; MOUSSA, Y. E.; WHEATE, N. J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton transactions, 47(19), 6645-6653, 2018. https://doi.org.10.1039/C8DT90088D DOI: https://doi.org/10.1039/C8DT00838H

PAHO - Pan American Health Organization. WHO reveals the main causes of death and disability worldwide between 2000 and 2019. December 9, 2020. Available at: < https://www.paho.org/pt/noticias/9-12-2020-oms- reveals -main causes of death and disability-and m-all-world-between-2000-and>. Accessed on: November 13, 2021

PAIM, L. F. N. A.; DALLA LANA, D. F.; GIARETTA, M.; DANIELLI, L. J.; FUENTEFRIA, A. M.; APEL, M. A.; KÜLKAMP-GUERREIRO, I. C. Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent: Chemical composition, biological screening, and development of a nanoemulsion formulation. Industrial crops and products, 126, 280-286, 2018. https://doi.org/10.1016/j.indcrop.2018.10.016 DOI: https://doi.org/10.1016/j.indcrop.2018.10.016

PANNU, J.; MCCARTHY, A.; MARTIN, A.; HAMOUDA, T.; CIOTTI, S.; FOTHERGILL, A.; SUTCLIFFE, J. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrobial agents and chemotherapy, 53(8), 3273-3279, 2019. https://doi.org/10.1128/AAC.00218-09 DOI: https://doi.org/10.1128/AAC.00218-09

PATHANIA, R.; NAJDA A.; CHAWLA, P.; KAUSHIK, R.; KHAN, M. A. Low-energy assisted sodium alginate stabilized Phyllanthus niruri extract nanoemulsion: Characterization, in vitro antioxidant and antimicrobial application. Biotechnology Reports, 33, e00711, 2022. https://doi.org/10.1016/j.btre.2022.e00711 DOI: https://doi.org/10.1016/j.btre.2022.e00711

PURSSELL, E. Antimicrobials. Understanding Pharmacology in Nursing Practice, 147-165, 2019. DOI: https://doi.org/10.1007/978-3-030-32004-1_6

QUATRIN, P. M.; VERDI, C. M.; SOUZA, M. E.; GODOI, S. N.; KLEIN, B.; GUNDEL, A.; ... SANTOS, R. C. V. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microbial pathogenesis, 112, 230-242, 2017. https://doi.org/10.1016/j.micpath.2017.09.062 DOI: https://doi.org/10.1016/j.micpath.2017.09.062

QUINTÃO, F. J.; TAVARES, R. S.; VIEIRA-FILHO, S. A.; SOUZA, G. H.; SANTOS, O. D. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia, 23(1), 101-107, 2013. https://doi.org/10.1590/S0102-695X2013005000001 DOI: https://doi.org/10.1590/S0102-695X2013005000001

RABINOVICH-GUILATT, L.; COUVREUR, P.; LAMBERT, G.; GOLDSTEIN, D.; BENITA, S.; DUBERNET, C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chemistry and Physics of Lipids, 131(1), 1-13, 2004. https://doi.org/10.1016/j.chemphyslip.2004.04.003 DOI: https://doi.org/10.1016/j.chemphyslip.2004.04.003

RAO, P. J.; KHANUM, H. A green chemistry approach for nanoencapsulation of bioactive compound–Curcumin. LWT-Food Science and Technology, 65, 695-702, 2016. https://doi.org/10.1016/j.lwt.2015.08.070 DOI: https://doi.org/10.1016/j.lwt.2015.08.070

RAY, S.; RAYCHAUDHURI, U.; CHAKRABORTY, R. An overview of encapsulation of active compounds used in food products by drying technology. Food bioscience, 13, 76-83, 2016. https://doi.org/10.1016/j.fbio.2015.12.009 DOI: https://doi.org/10.1016/j.fbio.2015.12.009

REDDY, S. R.; MELIK, D. H.; FOGLER, H. S. Emulsion stability—theoretical studies on simultaneous flocculation and creaming. Journal of Colloid and Interface Science, 82(1), 116-127, 1981. https://doi.org/10.1016/0021-9797(81)90129-6 DOI: https://doi.org/10.1016/0021-9797(81)90129-6

REYGAERT, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482, 2018. https://doi.org.10.3934/microbiol.2018.3.482 DOI: https://doi.org/10.3934/microbiol.2018.3.482

ROOZITALAB, G.; YOUSEFPOOR, Y.; ABDOLLAHI, A.; SAFARI, M.; RASTI, F.; OSANLOO, M. Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chemical Papers, 76(7), 4261-4271, 2022. https://doi.org/10.1007/s11696-022-02185-1 DOI: https://doi.org/10.1007/s11696-022-02185-1

SAEZ-LLORENS, X.; WONG, M. M. C.; CASTANO, E. DE SUMAN ONIX, DE MORÖS DAYSI., & DE ATENCIO IRIS Impact of an antibiotic restriction policy on hospital expenditures and bacterial susceptibilities: a lesson from a pediatric institution in a developing country. The Pediatric infectious disease journal, 19(3), 200-206, 2000. DOI: https://doi.org/10.1097/00006454-200003000-00005

SAHU, S.; KATIYAR, S. S.; KUSHWAH, V.; JAIN, S.; Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine, 13(16), 1985-1998, 2018. https://doi.org/10.2217/nnm-2018-0135 DOI: https://doi.org/10.2217/nnm-2018-0135

SAMBER, N.; KHAN, A.; VARMA, A.; MANZOOR, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharmaceutical biology, 53(10), 1496-1504, 2015. https://doi.org/10.3109/13880209.2014.989623 DOI: https://doi.org/10.3109/13880209.2014.989623

SHAH, S.; CHOUGULE, M. B.; KOTHA, A. K.; KASHIKAR, R.; GODUGU, C.; RAGHUVANSHI, R. S.; ... SRIVASTAVA, S. Nanomedicine based approaches for combating viral infections. Journal of Controlled Release, 338, 80-104, 2021. https://doi.org/10.1016/j.jconrel.2021.08.011 DOI: https://doi.org/10.1016/j.jconrel.2021.08.011

SHARMA, P.; VAIWALA, R.; PARTHASARATHI, S.; PATIL, N.; VERMA, A.; WASKAR, M.; ... AYAPPA, K. G. Interactions of surfactants with the bacterial cell wall and inner membrane: Revealing the link between aggregation and antimicrobial activity. Langmuir, 38(50), 15714-15728, 2022. https://doi.org/10.1021/acs.langmuir.2c02520 DOI: https://doi.org/10.1021/acs.langmuir.2c02520

SIENKIEWICZ, M.; ŁYSAKOWSKA, M.; DENYS, P.; KOWALCZYK, E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microbial drug resistance, 18(2), 137-148, 2012. https://doi.org/10.1089/mdr.2011.0080 DOI: https://doi.org/10.1089/mdr.2011.0080

SILVA, L. C.; MIRANDA, M. A. C. M.; FREITAS, J. V.; FERREIRA, S. F. A.; LIMA, E. C. O.; OLIVEIRA, C. M. A.; ... PEREIRA, M. Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Brazilian Journal of Microbiology, 51, 125-134, 2020. https://doi.org/10.1007/s42770-019-00201-3 DOI: https://doi.org/10.1007/s42770-019-00201-3

SPELLBERG, B.; BARTLETT, J.; WUNDERINK, R.; GILBERT, D. N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. American journal of respiratory and critical care medicine, 191(2), 135-140, 2015. https://doi.org/10.1164/rccm.201410-1894OE DOI: https://doi.org/10.1164/rccm.201410-1894OE

SURASSMO, S.; MIN, S. G.; BEJRAPHA, P.; CHOI, M. J. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International, 43(1), 8-17, 2010. https://doi.org/10.1016/j.foodres.2009.07.008 DOI: https://doi.org/10.1016/j.foodres.2009.07.008

TADROS, T. Principles of emulsion stabilization with special reference to polymeric surfactants. Journal of cosmetic science, 57(2), 153-169, 2006.

TADROS, T. F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Advances in colloid and interface science, 68, 97-200, 1996. https://doi.org/10.1016/S0001-8686(96)90047-0 DOI: https://doi.org/10.1016/S0001-8686(96)90047-0

TO, D.; KAKAR, A.; KALI, G.; WIBEL, R.; KNOLL, P.; MARX, F.; BERNKOP-SCHNÜRCH, A. Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. Journal of Colloid and Interface Science, 630, 164-178, 2023. https://doi.org/10.1016/j.jcis.2022.10.077 DOI: https://doi.org/10.1016/j.jcis.2022.10.077

TOPUZ, O. K.; ÖZVURAL, E. B.; ZHAO, Q.; HUANG, Q.; CHIKINDAS, M.; GÖLÜKÇÜ, M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food chemistry, 203, 117-123, 2016. https://doi.org/10.1016/j.foodchem.2016.02.051 DOI: https://doi.org/10.1016/j.foodchem.2016.02.051

TORTORA, G. J.; CASE, C. L.; FUNKE, B. R. Microbiology-12ª Edition. Artmed Publisher, 2016.

VALIZADEH, A.; SHIRZAD, M.; ESMAEILI, F.; AMANI, A. Increased antibacterial activity of cinnamon oil microemulsionin comparison with cinnamon oil bulk and nanoemulsion. Nanomedicine Research Journal, 3(1), 37-43, 2018.

WALLACE, R. J Antimicrobial properties of plant secondary metabolites. Proceedings of the nutrition society, 63(4), 621-629, 2004. https://doi.org/10.1079/PNS2004393 DOI: https://doi.org/10.1079/PNS2004393

WANG, C. Z.; LI, W. J.; TAO, R.; YE, J. Z.; ZHANG, H. Y. Antiviral activity of a nanoemulsion of polyprenols from ginkgo leaves against influenza A H3N2 and hepatitis B virus in vitro. Molecules, 20(3), 5137-5151, 2015. https://doi.org/10.3390/molecules20035137 DOI: https://doi.org/10.3390/molecules20035137

WANG, L.; LI, X.; ZHANG, G.; DONG, J.; EASTOE, J. Oil-in-water nanoemulsions for pesticide formulations. Journal of colloid and interface science, 314(1), 230-235, 2007. https://doi.org/10.1016/j.jcis.2007.04.079 DOI: https://doi.org/10.1016/j.jcis.2007.04.079

WANG, S.; LIANG, X.; ZHAO, W.; MI, X.; ZHANG, C.; ZHANG, W.; ... JIANG, Y. Preparation of nanoemulsion of grapefruit seed extract and evaluation of its antibacterial activity. Journal of Food Processing and Preservation, 46(1), e16197, 2022. https://doi.org/10.1111/jfpp.16197 DOI: https://doi.org/10.1111/jfpp.16197

WANG, J. J.; SUNG, K. C.; YEH, C. H.; FANG, J. Y. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions. International journal of pharmaceutics, 353(1-2), 95-104, 2008. https://doi.org/10.1016/j.ijpharm.2007.11.013 DOI: https://doi.org/10.1016/j.ijpharm.2007.11.013

WEI, S.; TIAN, Q.; ZHAO, X.; LIU, X.; HUSIEN, H. M.; LIU, M.; ... LI, J. Tea Tree Oil Nanoemulsion Potentiates Antibiotics against Multidrug-Resistant Escherichia coli. ACS Infectious Diseases, 8(8), 1618-1626, 2022. https://doi.org/10.1021/acsinfecdis.2c00223 DOI: https://doi.org/10.1021/acsinfecdis.2c00223

WEISS, J.; GAYSINSKY, S.; DAVIDSON, M.; MCCLEMENTS, J. Nanostructured encapsulation systems: food antimicrobials. In Global issues in food science and technology, 425-479, 2009. https://doi.org/10.1016/B978-0-12-374124-0.00024-7 DOI: https://doi.org/10.1016/B978-0-12-374124-0.00024-7

YANG, L.; WEN, K. S.; RUAN, X.; ZHAO, Y. X.; WEI, F.; WANG, Q. Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762, 2018. https://doi.org/10.3390/molecules23040762 DOI: https://doi.org/10.3390/molecules23040762

YANG, R.; MIAO, J.; ZHANG, Z.; WAN, C.; ZOU, L.; CHEN, C.; CHEN, J. Untargeted lipidomics reveals the antifungal mechanism of essential oils nanoemulsion against Penicillium digitatum. LWT, 168, 113909, 2022. https://doi.org/10.1016/j.lwt.2022.113909 DOI: https://doi.org/10.1016/j.lwt.2022.113909

YAZGAN, H.; OZOGUL, Y.; KULEY, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. International journal of food microbiology, 306, 108266, 2019. https://doi.org/10.1016/j.ijfoodmicro.2019.108266 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108266

ZAMANIAHARI, S.; JAMSHIDI, A.; MOOSAVY, M. H.; KHATIBI, S. A. Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. Journal of Food Measurement and Characterization, 16(4), 3289-3300, 2022. https://doi.org/10.1007/s11694-022-01436-9 DOI: https://doi.org/10.1007/s11694-022-01436-9

ZHANG, F.; RAMACHANDRAN, G.; MOTHANA, R. A.; NOMAN, O. M.; ALOBAID, W. A.; RAJIVGANDHIG; MANOHARAN, N. Anti-bacterial activity of chitosan loaded plant essential oil against multi drug resistant K. pneumoniae. Saudi Journal of Biological Sciences, 27(12), 3449-3455, 2020. https://doi.org/10.1016/j.sjbs.2020.09.025 DOI: https://doi.org/10.1016/j.sjbs.2020.09.025

ZHANG, Z.; MCCLEMENTS, D. J. Overview of nanoemulsion properties: stability, rheology, and appearance. In Nanoemulsions (pp. 21-49). Academic Press, 2018. https://doi.org/10.1016/B978-0-12-811838-2.00002-3 DOI: https://doi.org/10.1016/B978-0-12-811838-2.00002-3

Downloads

Publicado

2024-04-10

Como Citar

Prado, J. C. S., Prado, G. M., Aguiar, F. L. L., Neves, A. M., Nascimento, J. F. do, Abreu, F. O. M. da S., & Fontenelle, R. O. dos S. (2024). Nanoemulsões de compostos bioativos de base de plantas com aplicações antimicrobianas: uma revisão. Ciência E Natura, 46, e74325. https://doi.org/10.5902/2179460X74325

Edição

Seção

Química

Artigos mais lidos pelo mesmo(s) autor(es)