Degradação térmica, hidrolítica e no solo de poliuretanos - uma revisão bibliográfica sistemática
DOI:
https://doi.org/10.5902/2179460X73521Palavras-chave:
Degradação, Poliuretano, PolímeroResumo
Materiais poliméricos são amplamente utilizados em diversos ramos da indústria e apresenta vantagens como custo baixo, durabilidade, alta resistência mecânica e flexibilidade. O poliuretano (PU) é um polímero de grande interesse para indústria devido a sua versatilidade. O uso desses materiais provoca a geração resíduos de difícil degradação. A degradação de um polímero se dá pela quebra de grandes moléculas em moléculas menores através de reações pela ação de agentes externos, como água, temperatura e a presença de microrganismos, esses agentes estão presentes na degradação hidrolítica, térmica e na degradação no solo. Sendo assim, através da busca nas bases de dados Scopus e Web of Science, foi identificado as principais metodologias para estudar a degradação hidrolítica, térmica e no solo de polímeros. Foi observado que os estudos sobre a degradação dos polímeros são realizados de forma relativamente constante nos últimos 5 anos e ainda que esses estudos são realizados por diferentes grupos de pesquisa, ou seja, é um tema muito disseminado. As principais metodologias encontradas para realizar a degradação de polímeros foram: método de imersão da amostra em solução aquosa para avaliar degradação hidrolítica, a análise térmigravimétrica, Calorimetria Exploratória Diferencial e intemperismo acelerado para avaliar degradação térmica e a inoculação do polímero em solos com diferentes características, como pH, umidade e carga orgânica para degradação no solo.
Downloads
Referências
ABDUL SAMAT, A.; ABDUL HAMID, Z. A.; JAAFAR, M.; YAHAYA, B. H. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers, 13, 3087, 2021. DOI: https://doi.org/10.3390/polym13183087
AL HOSNI, A. S.; PITTMAN, J. K.; ROBSON, G. D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97, 105–114, 2019. DOI: https://doi.org/10.1016/j.wasman.2019.07.042
ALI, A.; SONG, L.; HU, J.; JIANG, J.; RAO, Q.; SHOAIB, M.; FAHAD, S.; CAI, Y.; ZHAN, X.; CHEN, F.; ZHANG, Q. Synthesis and characterization of caprolactone based polyurethane with degradable and antifouling performance. Chinese Journal of Chemical Engineering, 34, 299–306, 2021. DOI: https://doi.org/10.1016/j.cjche.2020.11.007
BORROWMAN, C. K.; BÜCKING, M.; GÖCKENER, B.; ADHIKARI, R., SAITO, K.; PATTI, A. F. LC-MS analysis of the degradation products of a sprayable, biodegradable poly(ester-urethane-urea). Polymer Degradation and Stability, 178, 1092018, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109218
BORROWMAN, C. K.; JOHNSTON, P.; ADHIKARI, R.; SAITO, K.; PATTI, A. F. Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch. Polymer Degradation and Stability, 175, 109126, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109126
BOSSA, F. D. L.; VERDOLOTTI, L.; RUSSO, V.; CAMPANER, P.; MINIGHER, A.; LAMA, G. C.; BOGGIONI, L.; TESSER, R.; LAVORGNA, M. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. Materials, 13, 3170, 2020. DOI: https://doi.org/10.3390/ma13143170
BRANNIGAN, R. P.; WALDER, A.; DOVE, A. P. Application of Modified Amino Acid-Derived Diols as Chain Extenders in the Synthesis of Novel Thermoplastic Polyester–Urethane Elastomers. ACS Sustainable Chemistry & Engineering, 5, 6902–6909, 2017. DOI: https://doi.org/10.1021/acssuschemeng.7b01110
BRZESKA, J.; TERCJAK, A.; SIKORSKA, W.; MENDREK, B.; KOWALCZUK, M.; RUTKOWSKA, M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers, 13, 1202, 2021. DOI: https://doi.org/10.3390/polym13081202
DECOLLIBUS, D. P.; MARIN, A.; ANDRIANOV, A. K. Effect of environmental factors on hydrolytic degradation of water-soluble polyphosphazene polyelectrolyte in aqueous solutions. Biomacromolecules, 11(8), 2033-8, 2010. DOI: https://doi.org/10.1021/bm100395u
Farzan, A., Borandeh, S., ZanjanizadehEzazi, N., Lipponen, S., Santos, H. A., &Seppälä, J. 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 139, 109988, 2020. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109988
FENG, G. Dong; MA, Y.; ZHANG, M.; JIA, P. You; HU, L. Hong; LIU, C. Guo; ZHOU, Y. Hong. . Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Progress in Organic Coatings, 133, 267–275, 2019. DOI: https://doi.org/10.1016/j.porgcoat.2019.04.053
GHOSH, T.; VOIT, B.; KARAK, N. Polystyrene/thermoplastic polyurethane interpenetrating network-based nanocomposite with high-speed, thermo-responsive shape memory behavior. Polymer, 200, 122575, 2020. DOI: https://doi.org/10.1016/j.polymer.2020.122575
GONZÁLEZ-GARCÍA, D.; MARCOS-FERNÁNDEZ, Á.; RODRÍGUEZ-LORENZO, L.; JIMÉNEZ-GALLEGOS, R.; VARGAS-BECERRIL, N.; TÉLLEZ-JURADO, L. Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering. Polymers, 10, 991, 2018. DOI: https://doi.org/10.3390/polym10090991
HAKKOU, K.; MOLINA-PINILLA, I.; RANGEL-NÚÑEZ, C.; SUÁREZ-CRUZ, A.; PAJUELO, E.; BUENO-MARTÍNEZ, M. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polymer Degradation and Stability, 167, 302–312, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.07.013
HOU, Z.; TENG, J.; WEI, J.; HAO, T.; LIU, Z.. Preparation and characterization of highly pH-sensitive biodegradable poly(ether-ester-urethane) and its potential application for drug delivery. Materials Today Communications, 28, 102527, 2021. DOI: https://doi.org/10.1016/j.mtcomm.2021.102527
HOU, Z.; XU, J.; TENG, J.; JIA, Q.; WANG, X. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Materials Science and Engineering: C, 109, 110571, 2020 DOI: https://doi.org/10.1016/j.msec.2019.110571
JOUYANDEH, M.; HADAVAND, B. S.; TIKHANI, F.; KHALILI, R.; BAGHERI, B.; ZARRINTAJ, P.; FORMELA, K.; VAHABI, H.; SAEB, M. R. Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 10, 871, 2020. DOI: https://doi.org/10.3390/coatings10090871
KALITA, H.; KAMILA, R.; MOHANTY, S.; NAYAK, S. K. Mechanical, thermal and accelerated weathering studies of bio-based polyurethane/clay nanocomposites coatings. Advances in Polymer Technology, 37, 1954–1962, 2018. DOI: https://doi.org/10.1002/adv.21853
KWIECIEŃ, K.; KWIECIEŃ, A.; STRYSZEWSKA, T.; SZUMERA, M.; DUDEK, M. Durability of ps-polyurethane dedicated for composite strengthening applications in masonry and concrete structures. Polymers, 12, 2830, 2020. DOI: https://doi.org/10.3390/polym12122830
LEE, H. T.; TSOU, C. H.; LI, C. L.; GU, J. H.; WU, C. L.; HWANG, J. J.; SUEN, M. C. Preparation and Characterization of Biodegradable Polyurethane Composites Containing Attapulgite Nanorods. Advances in Polymer Technology, 37, 208–220, 2018. DOI: https://doi.org/10.1002/adv.21658
LI, J.-W.; CHENG, Y.-H.; LEE, H.-T.; TSEN, W.-C.; CHIU, C.-W.; SUEN, M.-C. Properties and degradation of castor oil-based fluoridated biopolyurethanes with different lengths of fluorinated segments. RSC Advances, 9, 31133–31149, 2019. DOI: https://doi.org/10.1039/C9RA04654B
LI, T. T.; WANG, Y.; WANG, Y.; SUN, F., XU, J.; LOU, C. W.; LIN, J. H. Preparation of flexible, highly conductive polymer composite films based on double percolation structures and synergistic dispersion effect. Polymer Composites, 1, 1–9, 2021.
LIANG, J.; NING, R.; SUN, Z.; LIU, X.; SUN, W.; ZHOU, X. Preparation and characterization of an eco-friendly dust suppression and sand-fixation liquid mulching film. Carbohydrate Polymers, 256, 117429, 2021. DOI: https://doi.org/10.1016/j.carbpol.2020.117429
LIGIER, K.; OLEJNICZAK, K.; NAPIÓRKOWSKI, J. Wear of polyethylene and polyurethane elastomers used for components working in natural abrasive environments. Polymer Testing, 100, 107247, 2021. DOI: https://doi.org/10.1016/j.polymertesting.2021.107247
LIU, C.-H.; LEE, H.-T.; TSOU, C.-H.; GU, J.-H.; SUEN, M.-C.; CHEN, J.-K. In Situ Polymerization and Characteristics of Biodegradable Waterborne Thermally-Treated Attapulgite Nanorods and Polyurethane Composites. Journal of Inorganic and Organometallic Polymers and Materials, 27, 244–256, 2017. DOI: https://doi.org/10.1007/s10904-017-0679-5
LIU, X.; YANG, Y.; GAO, B., LI, Y.; WAN, Y. Environmentally Friendly Slow-Release Urea Fertilizers Based on Waste Frying Oil for Sustained Nutrient Release. ACS Sustainable Chemistry and Engineering, 5, 6036–6045, 2017. DOI: https://doi.org/10.1021/acssuschemeng.7b00882
LUCIO, B.; FUENTE, J. L. de la. Structural and thermal degradation properties of novel metallocene-polyurethanes. Polymer Degradation and Stability, 136, 39–47, 2017. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.12.008
MACOCINSCHI, D.; FILIP, D.; CIUBOTARU, B.-I.; DUMITRIU, R. P.; VARGANICI, C.-D.; ZALTARIOV, M.-F. Blends of sodium deoxycholate-based poly(ester ether)urethane ionomer and hydroxypropylcellulose with mucosal adhesiveness. International Journal of Biological Macromolecules, 162, 1262–1275, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.191
MANIKANDAN, A.; MANI, M. P.; JAGANATHAN, S. K.; RAJASEKAR, R.; JAGANNATH, M. Formation of functional nanofibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polymer Testing, 61, 106–113, 2017. DOI: https://doi.org/10.1016/j.polymertesting.2017.05.008
MI, H. Y.; JING, X.; HAGERTY, B. S.; CHEN, G.; HUANG, A.; TURNG, L. S. Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials and Design, 127, 106–114, 2017. DOI: https://doi.org/10.1016/j.matdes.2017.04.056
MI, H.-Y.; JING, X.; NAPIWOCKI, B. N.; HAGERTY, B. S.; CHEN, G.; TURNG, L.-S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. Journal of Materials Chemistry B, 5, 4137–4151, 2017. DOI: https://doi.org/10.1039/C7TB00419B
MiSHRA, V. K.; PATEL, R. H. Synthesis and characterization of flame retardant polyurethane: Effect of castor oil polyurethane on its properties. Polymer Degradation and Stability, 175, 109132, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109132
MOGHANIZADEH-ASHKEZARI, M.; SHOKROLLAHI, P.; ZANDI, M.; SHOKROLAHI, F. Polyurethanes with separately tunable biodegradation behavior and mechanical properties for tissue engineering. Polymers for Advanced Technologies, 29 (1), 528–540, 2018. DOI: https://doi.org/10.1002/pat.4160
MONTEIRO, W. F., MIRANDA, G. M., SOARES, R. R., SANTOS, C. A. B. dos; HOFFMANN, M. S.; CARONE, C. L. P.; LIMA, V. de; SOUZA, M. F. de; CAMPANI, A. D.; EINLOFT, S. M. O.; LIMA, J. E. de; LIGABUE, R. A. Weathering resistance of waterborne polyurethane coatings reinforced with silica from rice husk ash. Anais Da Academia Brasileira de Ciencias, 91 (4), 14p, 2019. DOI: https://doi.org/10.1590/0001-3765201920181190
PANWIRIYARAT, W.; TANRATTANAKUL, V.; CHUEANGCHAYAPHAN, N. Study on physicochemical properties of poly(ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly(butylene succinate) as soft segments. Polymer Bulletin, 74, 2245–2261, 2017 DOI: https://doi.org/10.1007/s00289-016-1833-x
PELUFO, D. I.; NETO, S. C.; GOBBO, R. C. B., SANTOS, A. J. dos; Terezo, A. J.; SIQUEIRA, A. B. de. Kinetic study of the thermal decomposition of castor oil based polyurethane. Journal of Polymer Research, 27, 2020. DOI: https://doi.org/10.1007/s10965-020-02123-3
POLO FONSECA, L.; TRINCA, R. B.; FELISBERTI, M. I. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. International Journal of Pharmaceutics, 546, 106–114, 2018. DOI: https://doi.org/10.1016/j.ijpharm.2018.05.034
REINERTE, S.; KIRPLUKS, M.; CABULIS, U. Thermal degradation of highly crosslinked rigid PU-PIR foams based on high functionality tall oil polyol. Polymer Degradation and Stability, 167, 50–57, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.06.021
ROMERO-AZOGIL, L.; BENITO, E.; MARTÍNEZ DE ILARDUYA, A.; GARCÍA-MARTÍN, M. G.; GALBIS, J. A. Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer Degradation and Stability, 153, 262–271, 2018. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.05.009
SAHOO, S.; KALITA, H.; MOHANTY, S.; NAYAK, S. K. Degradation Study of Biobased Polyester–Polyurethane and its Nanocomposite Under Natural Soil Burial, UV Radiation and Hydrolytic-Salt Water Circumstances. Journal of Polymers and the Environment, 26, 1528–1539, 2018. DOI: https://doi.org/10.1007/s10924-017-1058-6
SATTI, S. M.; SHAH, Z.; LUQMAN, A.; HASAN, F.; OSMAN, M.; SHAH, A. A. Biodegradation of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Newly Isolated Penicillium oxalicum SS2 in Soil Microcosms and Partial Characterization of Extracellular Depolymerase. Current Microbiology, 77, 1622–1636, 2020. DOI: https://doi.org/10.1007/s00284-020-01968-7
SHAH, S. A. A.; ATHIR, N.; IMRAN, M.; CHENG, J.; ZHANG, J. Thermo-mechanically improved curcumin and zwitterion incorporated polyurethane-urea elastomers. Polymer Degradation and Stability, 164, 28–35, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.03.018
SHETRANJIWALLA, S.; LI, S.; BOUZIDI, L.; NARINE, S. S. Effect of hydrothermal ageing on structure and physical properties of one-phase and two-phase entirely lipid-derived thermoplastic poly(ester urethane)s. Polymer Degradation and Stability, 135, 61–72, 2017. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.11.020
SU, S.-K.; GU, J.-H.; LEE, H.-T.; WU, C.-L.; HWANG, J.-J.; SUEN, M.-C.. Synthesis and properties of novel biodegradable polyurethanes containing fluorinated aliphatic side chains. Journal of Polymer Research, 24, 142, 2017. DOI: https://doi.org/10.1007/s10965-017-1301-9
SUN, Y.; WANG, Q.; ZHANG, S.; LI, H.; ZHANG, J.; LI, D.; LI, W. Synthesis of aromatic-doped polycaprolactone with tunable degradation behavior. Polymer Chemistry, 9, 3931–3943, 2019. DOI: https://doi.org/10.1039/C8PY00374B
TRAVINSKAYA, T. V.; BRYKOVA, A. N.; SAVELYEV, Y. V.; BABKINA, N. V.; SHTOMPEL, V. I. (Bio)degradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure. International Journal of Polymer Science, 2017. DOI: https://doi.org/10.1155/2017/8632072
VIEIRA, T.; SILVA, J. C.; BORGES, J. P.; HENRIQUES, C. Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering. European Polymer Journal, 103, 271–281, 2018. DOI: https://doi.org/10.1016/j.eurpolymj.2018.04.005
VILLEGAS-VILLALOBOS, S.; DÍAZ, L. E.; VILARIÑO-FELTRER, G.; VALLÉS-LLUCH, A.; GÓMEZ-TEJEDOR, J. A.; &VALERO, M. F. Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. Journal of Materials Research, 33, 2598–2611, 2018. DOI: https://doi.org/10.1557/jmr.2018.286
WEEMS, A. C.; EASLEY, A.; ROACH, S. R.; MAITLAND, D. J. Highly Cross-Linked Shape Memory Polymers with Tunable Oxidative and Hydrolytic Degradation Rates and Selected Products Based on Succinic Acid. ACS Applied Bio Materials, 2, 454–463, 2019. DOI: https://doi.org/10.1021/acsabm.8b00650
XIAO, M.; ZHANG, N.; ZHUANG, J.; SUN, Y.; REN, F.; ZHANG, W.; HOU, Z. Degradable poly(ether-ester-urethane)s based on well-defined aliphatic diurethane diisocyanate with excellent shape recovery properties at body temperature for biomedical application. Polymers, 11, 1–17, 2019. DOI: https://doi.org/10.3390/polym11061002
XIE, Q.; MA, C.; ZHANG, G.; BRESSY, C. Poly(ester)–poly(silyl methacrylate) copolymers: synthesis and hydrolytic degradation kinetics. Polymer Chemistry, 9, 1448–1454, 2018. DOI: https://doi.org/10.1039/C8PY00052B
YANG, H.; CHANG, H.; ZHANG, Q.; SONG, Y.; JIANG, L.; JIANG, Q.; XUE, X.; HUANG, W.; MA, C.; JIANG, B. Highly Branched Copolymers with Degradable Bridges for Antifouling Coatings. ACS Applied Materials and Interfaces, 12, 16849–16855, 2020. DOI: https://doi.org/10.1021/acsami.9b22748
YAO, J.; DAI, Z.; YI, J.; YU, H.; WU, B., & DAI, L. (2020). Degradable polyurethane based on triblock polyols composed of polypropylene glycol and ε-caprolactone for marine antifouling applications. Journal of Coatings Technology and Research, 17, 865–874, 2020. DOI: https://doi.org/10.1007/s11998-019-00313-3
ZHAO, H.; NAM, P. K. souk; RICHARDS, V. L.; LEKAKH, S. N. Thermal Decomposition Studies of EPS Foam, Polyurethane Foam, and Epoxy Resin (SLA) as Patterns for Investment Casting; Analysis of Hydrogen Cyanide (HCN) from Thermal Degradation of Polyurethane Foam. International Journal of Metalcasting, 13(1), 18–25, 2019. DOI: https://doi.org/10.1007/s40962-018-0240-5
ZHENG, F.; JIANG, P.; HU, L.; BAO, Y.; XIA, J. Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 56, 1071–1081, 2019. DOI: https://doi.org/10.1080/10601325.2018.1477479
ZHOU, K.; GONG, K.; ZHOU, Q.; ZHAO, S.; GUO, H.; QIAN, X. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. Journal of Cleaner Production, 257, 120606, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.120606
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência e Natura

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.