Esta é uma versão desatualizada publicada em 2022-04-04. Leia a versão mais recente.

Reúso industrial de efluentes petroquímicos: Um estudo de caso da ultrafiltração e osmose reversa

Autores

DOI:

https://doi.org/10.5902/2179460X68837

Palavras-chave:

Reúso industrial, Efluente petroquímico, Osmose reversa

Resumo

A indústria petroquímica utiliza elevados volumes de água em seus processos produtivos e geram efluentes que apresentam grande potencial para a reutilização nos processos produtivos. Neste cenário o reúso destes efluentes é uma alternativa para o desenvolvimento sustentável do setor. Portanto, este estudo teve como objetivo avaliar a aplicação da ultrafiltração (UF) e osmose reversa (OR) no tratamento dos efluentes petroquímicos para produção de água de reúso industrial reduzindo impactos ambientais com a disposição de efluentes no solo. Os experimentos foram realizados com os efluentes da Lagoa 1 (LE-1), efluente da Lagoa 8 (LE-8) e efluente inorgânico (INO), os quais foram utilizados como água de alimentação na unidade piloto com capacidade de tratamento de 1 m³.h–1. Os parâmetros avaliados nos efluentes tratados foram o cálcio, magnésio, cloreto, sulfato, condutividade, carbono orgânico total, cor, demanda química de oxigênio, pH, sólidos suspensos totais e turbidez. Foram determinados os fluxos dos permeados das membranas para avaliar o desempenho do sistema piloto. Após tratamento e caracterização de cada efluente, os resultados foram comparados para a definição do efluente mais adequado para alcançar a qualidade requerida para reúso industrial. Os resultados mostraram que o tratamento UF/OR proposto forneceu um fluxo estável para o efluente da LE-8, e para as demais correntes houve queda acentuada de fluxo que indicam processos de incrustação das membranas de UF e OR. Quanto à eficiência do tratamento, o processo apresentou a remoção de compostos de interesse como a demanda química de oxigênio (DQO) acima de 90%, remoção de sais e condutividade elétrica (CE) acima de 92% para os efluentes da Lagoa 1, efluente da Lagoa 8 e efluente inorgânico. Assim, considerando todos os aspectos avaliados neste estudo, o efluente LE-8 foi o mais adequado para ser utilizado como alimentação no sistema piloto com UF e OR, de tal modo, que o permeado produzido apresentou a qualidade necessária para reúso nas indústrias do Polo Petroquímico do Sul, atingindo qualidade equivalente à água clarificada. Desta forma, o reúso de efluentes petroquímicos tratados poderá ser uma importante fonte alternativa de recursos hídricos frente às restrições de disponibilidade e escassez nas indústrias no Sul do Brasil.

Downloads

Não há dados estatísticos.

Biografia do Autor

Andréia Barros Santos, Universidade FEEVALE, Novo Hamburgo, RS

Graduada em Química pela UFRGS em 2016. Doutoranda do Programa de Pós-graduação em Engenharia de Minas, Metalurgia e Materiais da UFRGS.

Aline Silveira Barreto, Universidade Feevale, Novo Hamburgo, RS

Engenheira Química, formada pela Universidade Feevale, no ano de 2015. Cursando Doutorado na Universidade Federal do Rio Grande do Sul, no Programa de Pós- Graduação em Recursos Hídricos e Saneamento Ambiental.

Luciano Ribeiro Gonçalves, Universidade Feevale, Novo Hamburgo, RS

Engenheiro Químico e Doutorado (em curso) em Qualidade Ambiental.

Alessandra Nogueira Pires, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS

Chemical Engineer, Graduate Professor

Alexandre Giacobbo, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Graduação em Engenharia de Bioprocessos e Biotecnologia e doutorado (2015) em Engenharia na área de Ciência e Tecnologia de Materiais.

Marco Antônio Siqueira Rodrigues, Universidade Feevale, Novo Hamburgo, RS

Pós-Doutorado na Universidade Politécnica de Valência. Professor Titular na Engenharia Química da Universidade Feevale.

Referências

ANA - Agência Nacional de Águas. Conjuntura dos Recursos Hídricos no Brasil. Brasília: ANA, 2018. Retrieved from: http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/relatorio-conjuntura-2017.pdf. Last access: 22 Jun. 2019.

ANIS, Shaheen Fatima; HASHAIKEH, Raed; HILAL, Nidal. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, v. 452, p. 159-195, 2019.

APHA, 2012. Standard Methods For The Examination Of Water And Wastewater, 22nd Ed.: American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC.

BARRETO, A.S. Avaliação do pré-tratamento para processos de separação por membranas no tratamento de efluente petroquímico. Dissertação - Mestrado Profissional em Tecnologia de Materiais e Processos Industriais - Feevale, Novo Hamburgo - RS, 2020.

CNI - Confederação Nacional da Indústria. A Indústria em Números. Brasília, DF: CNI, 2017. Retrieved from: http:// www.portaldaindustria.com.br/publicacoes/2017/7/a-industria-em-numeros/#aindustria-em-numeros-dezembro-2017. Last access: 24 jun. 2020.

COFIP - Comitê de Fomento Industrial do Polo. Triunfo: COFIP, 2021. Retrieved from: http://www.cofiprs.com.br/distrito-cofip-comite-de-fomento-industrial-do-polo. Last access: 21 Jan. de 2021.

DRAŽEVIĆ, Emil et al. Permeability of uncharged organic molecules in reverse osmosis desalination membranes. Water Research, v. 116, p. 13-22, 2017.

EPE - Empresa de Pesquisa Energética. Panorama do Refino e da Petroquímica no Brasil. Rio de Janeiro: EPE, 2018. Retrieved from: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-/topico-412/NT%20Refino%20e%20Petroqu%C3%ADmica_2018.11.01.pdf. Last access: 21 Feb. 2021.

FILMTEC. Formulário N. º 609-00071-1009, Technical Manual, FilmtecTM. Reverse Osmosis Membranes. FILMTEC, 2018. Retrieved from: https://www.lenntech.com/Data-sheets/Filmtec-Reverse-Osmosis-Membranes-L.pdf. Last access: 20 Jul. 2018.

GE - General Electric. Lenntech Fact sheet, GE-PW-Series-Industrial-Ultrafiltration-Post-treatment-RO-NF-Lenntech. GE, 2015. Retrieved from: https://www.lenntech.com/Data-sheets/GE-PW-Series-L.pdf. Last access: 21 Feb. 2021.

GOH, P. S.; ISMAIL, A. F. A review on inorganic membranes for desalination and wastewater treatment. Desalination, v. 434, p. 60-80, 2018.

GONÇALVES, L. R. 2020. Avaliação do Processo de eletrodiálise reversa aplicado no tratamento de efluentes petroquímicos. Dissertação - Mestrado Profissional em Tecnologia de Materiais e Processos Industriais. Feevale, Novo Hamburgo - RS.

HAIDARI, A. H.; HEIJMAN, S. G. J.; VAN DER MEER, W. G. J. Optimal design of spacers in reverse osmosis. Separation and Purification Technology, v. 192, p. 441-456, 2018.

HANSEN, Everton; RODRIGUES, Marco Antônio Siqueira; DE AQUIM, Patrice Monteiro. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers. Journal of Environmental Management, v. 181, p. 157-162, 2016.

HANSEN, Éverton; RODRIGUES, Marco Antônio Siqueira; DE AQUIM, Patrice Monteiro. Characterization of aqueous streams in a petrochemical industry: A study for the reuse of industrial effluents. Journal of Water Process Engineering, v. 27, p. 99-109, 2019.

IEA - International Energy Agency. Oil Market Report: World Oil Supply. IEA, 2017. Retrieved from: https://www.iea.org/OILMARKETREPORT/OMRPUBLIC/. Last access: 19 Mar. 2018.

JAFARINEJAD, Shahryar; JIANG, Sunny C. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. Journal of Environmental Chemical Engineering, v. 7, n. 5, p. 103326, 2019.

JIANG, Shanxue; LI, Yuening; LADEWIG, Bradley P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, v. 595, p. 567-583, 2017.

KAMALI, Mohammadreza et al. Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chemical Engineering Journal, v. 368, p. 474-494, 2019.

LI, Wende et al. Reverse osmosis membrane, seawater desalination with vibration assisted reduced inorganic fouling. Desalination, v. 417, p. 102-114, 2017.

LIMA, Eduardo Pedrosa da Cunha. Água e indústria: Experiências e desafios. Brasília: Ministério da Indústria, Comércio Exterior e Serviços (MDIC)/Infinita Imagem, p. 57-60, 2018.

LUJÁN-FACUNDO, María-José et al. Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process. Journal of Cleaner Production, v. 143, p. 804-813, 2017.

MALAEB, Lilian; AYOUB, George M. Reverse osmosis technology for water treatment: state of the art review. Desalination, v. 267, n. 1, p. 1-8, 2011.

QASIM, Muhammad et al. Reverse osmosis desalination: A state-of-the-art review. Desalination, v. 459, p. 59-104, 2019.

ROMERO-DONDIZ, Estela María et al. Comparison of the performance of ultrafiltration and nanofiltration membranes for recovery and recycle of tannins in the leather industry. Journal of Cleaner Production, v. 135, p. 71-79, 2016.

SANTOS, A.B. 2020. Reúso de efluente petroquímico empregando osmose reversa. Dissertação - Mestrado Profissional em Tecnologia de Materiais e Processos Industriais. Feevale, Novo Hamburgo - RS.

SAPOTEC. 2021. Retrieved from: https://www.sapotecsul.com.br/#7. Last access: 12 Jan. 2021.

SPEIGHT, James G. Handbook of industrial hydrocarbon processes. Gulf Professional Publishing, 2019.

STEVENSON, Frank J. Humus chemistry: genesis, composition, reactions. John Wiley & Sons, 1994.

TANG, Fang et al. Fouling of reverse osmosis membrane for municipal wastewater reclamation: autopsy results from a full-scale plant. Desalination, v. 349, p. 73-79, 2014.

TIN, Moe Ma Ma et al. Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications. Separation and Purification Technology, v. 189, p. 170-175, 2017.

YU, Li; HAN, Mei; HE, Fang. A review of treating oily wastewater. Arabian Journal of Chemistry, v. 10, p. S1913-S1922, 2017.

WANG, Yi-Ning; TANG, Chuyang Y. Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes the role of hydrodynamic conditions, solution chemistry, and membrane properties. Journal of Membrane Science, v. 376, n. 1-2, p. 275-282, 2011.

VENZKE, Carla Denize et al. Application of reverse osmosis to petrochemical industry wastewater treatment aimed at water reuse. Management of Environmental Quality: An International Journal, v. 28, n. 1, p. 70-77, 2017.

VENZKE, Carla Denize et al. Integrated membrane processes (EDR-RO) for water reuse in the petrochemical industry. Journal of Membrane Science and Research, v. 4, n. 4, p. 218-226, 2018a.

VENZKE, Carla Denize et al. Increasing water recovery rate of membrane hybrid process on the petrochemical wastewater treatment. Process Safety and Environmental Protection, v. 117, p. 152-158, 2018b.

Publicado

2022-04-04

Versões

Como Citar

Santos, A. B., Barreto, A. S., Gonçalves, L. R., Pires, A. N., Giacobbo, A., & Rodrigues, M. A. S. (2022). Reúso industrial de efluentes petroquímicos: Um estudo de caso da ultrafiltração e osmose reversa. Ciência E Natura, 44, e19. https://doi.org/10.5902/2179460X68837

Edição

Seção

Edição Especial

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.