Adsorção do corante remazol amarelo ouro de solução aquosa por caroço de acerola: estudos cinéticos e de equilíbrio.

Autores

DOI:

https://doi.org/10.5902/2179460X64900

Palavras-chave:

Biossorção, Caroços de acerola, Efluentes Têxteis, Remazol amarelo ouro

Resumo

Neste trabalho, foi avaliada a eficiência de caroços de acerola (Malpighia emarginata) como adsorvente (ACB) e precursor de carvão (CAB) e carvão ativado (ACP) para a remoção do corante têxtil remazol amarelo ouro (RGY) em solução. A caracterização dos adsorventes foi feita por espectroscopia de infravermelho por transformada de Fourier, análise termogravimétrica (TG) e determinação da área específica e do ponto de carga zero (pHpzc). As melhores condições de adsorção para esses adsorventes foram alcançadas após estudos de massa de adsorvente e testes cinéticos e de equilíbrio. A capacidade adsortiva q (mg.g-1) foi utilizada para verificar a eficiência de adsorção. Os valores de pHpzc foram de 4,15 para ACB, 6,00 para CAB e 4,32 para ACP, mostrando uma carga superficial favorável para a adsorção do corante. Considerando a cinética, o modelo de pseudo-primeira ordem ajustou-se satisfatoriamente aos dados experimentais. Em relação às isotermas, o modelo de Langmuir foi mais eficiente para representar os dados experimentais. ACB, CAB e ACP são potenciais adsorventes para corantes em efluentes, apresentando capacidade de adsorção máxima, nas condições desse estudo, de 52,35 mg.g-1, 16,40 mg.g-1 e 119,00 mg.g-1, respectivamente.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ada Azevedo Barbosa, Universidade Federal de Pernambuco, Recife, PE, Brazil

Holds a degree and a master's degree in Food Engineering from the State University of Southwest Bahia, a postgraduate degree in occupational safety engineering and a degree and doctorate in chemical engineering. She has teaching experience for food engineering, environmental engineering and a bachelor's degree in chemistry with technological assignments.

Marina Gomes Silva, Universidade Federal de Pernambuco, Recife, PE, Brazil

Degree in Chemical Engineering. Master's student in Chemical Engineering.

Ingrid Larissa da Silva Santana, Universidade Federal de Pernambuco, Recife, PE, Brazil

Holds a degree in Chemical Engineering from the Federal University of Pernambuco. Master's student in Chemical Engineering.

Ramon Vinícius Santos de Aquino, Universidade Federal de Pernambuco, Recife, PE, Brazil

Bachelor in Industrial Chemistry from the Federal University of Pernambuco (UFPE) and Master in Chemical Engineering from PPGEQ-UFPE.

Naiana Santos da Cruz Santana Neves, Universidade Federal de Pernambuco, Recife, PE, Brazil

Chemical Engineer from the Federal University of Pernambuco. Master in Chemical Engineering from the Federal University of Pernambuco. Doctoral student at the Graduate Program in Chemical Engineering at the Federal University of Pernambuco.

Isis Henriqueta dos Reis Ferreira, Universidade Federal de Pernambuco, Recife, PE, Brazil

Chemical Engineer graduated from the Federal University of Pernambuco (UFPE). A CAPES scholarship by the Science Without Borders program, she studied at the University of Alabama in Tuscaloosa, United States of America.

Otidene Rossiter Sá da Rocha, Universidade Federal de Pernambuco, Recife, PE, Brazil

Holds a degree in Chemical Engineering from the Federal University of Pernambuco, a Master's degree in Chemical Engineering from the Federal University of Rio Grande do Norte and a PhD in Chemical Engineering from the Federal University of Rio Grande do Norte. He is currently an adjunct professor at the Federal University of Pernambuco.

Referências

AHMED, M.; MASHKOOR, F.; NASAR, A. Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundwater for Sustainable Development, v. 10, p. 1-10, 2020.

AHMED, M. J.; THEYDAN, S. K. Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones. Ecotoxicology and Environmental Safety, v.84, p. 39–45, 2012.

ALJEBOREE, A. M.; ALSHIRIFI, A. N.; ALKAIM, A. F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, v. 10, p. S3381-S3393, 2017.

ANGIN, D. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, v.168, p.259–266, 2014.

ARAÚJO, K. S.; ANTONELLI, R.; GAYDECZKA, B.; GRANATO, A. C.; MALPASS, G. R. P. Processos oxidativos avançados: uma revisão de fundamentos e Efluentes, aplicações no tratamento de águas residuais urbanas e Industriais. Revista Ambiente e Agua, v.9, p.445–458, 2014.

ARYA, M. C.; BAFILA, P. S.; MISHRA, D.; NEGI, K.; KUMAR, R.; BUGHANI, A. Adsorptive removal of Remazol Brilliant Blue R dye from its aqueous solution by activated charcoal of Thuja orientalis leaves: an eco-friendly approach. SN Aplplied Sciences, v. 2, 265, 2020.

AVELAR, F. F.; BIANCHI, M. L.; GONÇALVES, M.; DA MOTA, E.G. The use of piassava fibers (Attalea funifera) in the preparation of activated carbon. Bioresource Technology, v.101, p.4639–4645, 2010.

AZIZ, A. R. A.; ASAITHAMBI, P.; DAUD, W. M. A. B. W. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Safety and Environmental Protection, Prot. v.99, p.227–235, 2016.

BARBOSA, A. A.; AQUINO, R. V. S.; OLIVEIRA, A. F. B.; DANTAS, R. F.; SILVA, J. P.; DUARTE, M. M. M. B., OTIDENE, R. S. R. 2019. Development of a new photocatalytic reactor built from recyclable material for the treatment of textile industry effluents. Desalination and Water Treatment, v.151, p. 82–92, 2019.

BAYOMIE, O. S.; KANDEEL, H.; SHOEIB, T.; YANG, H.; YOUSSEF, N.; EL-SAYED, M. M. H. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Scientific Reports, v. 10, 7824, 2020.

BHATNAGAR, A.; SILLANPÄÄ, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chemical Engineering Journal, v.157, p.277–296, 2010.

BOUHADJRA, K.; LEMLIKCHI, W.; FERHATI, A.; MIGNARD, S. Enhancing removal efficiency of anionic dye (cibacron blue) using waste potato peels powder. Scientific Reports, v. 11, 2090, 2021.

CHAKMA, S.; DAS, L.; MOHOLKAR, V.S. Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems: A mechanistic investigation. Separation and Purification Technology, v.156, p.596–607, 2015.

CHAKRABORTY, T. K.; ISLAM, M. S.; KABIR, A. H. M. E.; GHOSH, G. C. Jute (Corcholus olitorius) stick charcoal as a low-cost adsorbent for the removal of methylene blue dye from aqueous solution. SN applied Sciences, v. 2, 765, 2020.

HASSAAN, M.A., EL NEMR, A., MADKOUR, F.F. Advanced oxidation processes of Mordant Violet 40 dye in freshwater and seawater. Egyptian Journal of Aquatic Research, v.43, p.1–9, 2017.

HOLKAR, C.R., JADHAV, A.J., PINJARI, D. V., MAHAMUNI, N.M., PANDIT, A.B. A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, v.182, p.351–366, 2016.

JARAMILLO-SIERRA, B.; MERCADO-CABRERA, A.; HERNÁNDEZ-ARIAS, A. N.; PEÑA-ERGUILUZ, R.; LÓPEZ-CALLEJAS, R.; RODRÍGUEZ-MÉNDEZ, B. G.; VALENCIA-ALVARADO, R. Methylene blue degradation assesment bo advanced oxidation methods. Journal of Applied Research and Technology, v.17, p.172-179, 2019.

LAFI, R.; MONTASSER, I.; HAFIANE, A. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorption Science and Technology, v. 37, 160-181

LARGITTE, L.; PASQUIER, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, v. 109, p. 495-504, 2016.

LI, H.; LIU, S.; ZHAO, J.; FENG, N. Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids Surfaces A Physicochemical and Engineering Aspect. v.494, p.222–227, 2016.

MONTGOMERY, D. C. Introdução ao controle estatístico da qualidade (Introduction to statistical quality control). 4th ed. Rio de Janeiro: LTC, 2012.

REDDY, D. H. K.; RAMANA, D. K. V.; SESHAIAH, K.; REDDY, A. V. R. Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, v.268, p.150–157, 2011.

RODRIGUES, L. A.; DA SILVA, M. L. C. P.; ALVAREZ-MENDES, M. O.; COUTINHO, A.; DOS, R.; THIM, G. P. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, v.174, p.49–57, 2011.

SÁNCHEZ-NAVA, D. M.; LÓPEZ-GONZÁLEZ, H.; OLGUÍN, M. T.; BULBULIAN, S. Nickel (II) sorption from aqueous media by Agave salmiana as biosorbent. Journal of Applied Research and Technology, v.17, p.186-194, 2019.

SCHIMMEL, D., FAGNANI, K.C., DOS SANTOS, J.B.O., BARROS, M.A.S.D., DA SILVA, E.A. Adsorption of turquoise blue qg reactive dye on commercial activated carbon in batch reactor: Kinetic and equilibrium studies. Brazilian Journal of Chemical Engineering,. v.27, p.289–298, 2010.

SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificaçãp Espectrométrica de Compostos Orgânicos (Spectrometric Identification of Organic Compounds). 7th ed. Rio de Janeiro: LTC, 2006.

SOLOMONS, T. W. G.; FRYHLE, C.B. Química Orgânica (Organic Chemistry). 10th ed. Rio de Janeiro: LTC, 2012.

SOTO, M. L.; MOURE, A.; DOMÍNGUEZ, H.; PARAJÓ, J. C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, v.105, p.1–27, 2011.

TAGLIAFERRO, G. V.; PEREIRA, P. H. F.; RODRIGUES, L. Á.; PINTO DA SILVA, M. L. C. Adsorção de chumbo, cádmio e prata em óxido de nióbio (v) hidratado preparado pelo método da precipitaç ão em solução homogd̂nea. Quimica Nova, v.34, p. 101–105, 2011.

TOMUL, F.; ARSLAN, Y.; BAŞOĞLU, F. T.; BABUÇCUOĞLU, Y.; TRAN, H. N.Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: Adsorption kinetics, isotherms, and thermodynamics. Journal of Environmental Management, v.238, p.296–306, 2019.

TRAN, H. N.; CHAO, H. P. Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process. Environmental Science and Pollution Research, v.25, p.12808–12820, 2018.

VIOTTI, P. V.; MOREIRA, W. M.; SANTOS, O. A. A.; BERGAMASCO, R.; VIEIRA, A. M. S.; VIEIRA, M. F. (2019) Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, v.219, p.809–817, 2019.

WAWRZKIEWICZ, M.; WIŚNIEWSKA, M.; GUN’KO, V. M.; ZARKO, V. I. Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica-alumina oxide. Powder Technology, v.278, p.306–315, 2015.

WIDIYASTUTI, W.; ROIS, M. F.; SUARI, N. M. I. P.; SETYAWAN, H. Activated carbon nanofibers derived from coconut shell charcoal for dye removal application. Advanced Powder Technology, v. 31, n. 8, p. 3267-3273, 2020.

ZHANG, B.; WU, Y.; CHA, L. Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: performance, isotherm and kinetic studies. Journal of Dispersion Science and Technology, v. 41, n. 1, p. 125-136, 2020.

ZHAO, Y.; ZHU, L.; LI, W.; LIU, J.; LIU, X.; HUANG, K. Insights into enhanced adsorptive removal of rhodamine B by different chemically modified garlic peels: Comparison, kinetics, isotherms, thermodynamics and mechanism. Journal of Molecular Liquids, v. 293, p. 1-10, 2019.

Publicado

2022-02-09 — Atualizado em 2022-04-06

Versões

Como Citar

Barbosa, A. A., Silva, M. G., Santana, I. L. da S., Aquino, R. V. S. de, Neves, N. S. da C. S., Ferreira, I. H. dos R., & Rocha, O. R. S. da. (2022). Adsorção do corante remazol amarelo ouro de solução aquosa por caroço de acerola: estudos cinéticos e de equilíbrio. Ciência E Natura, 43, e74 . https://doi.org/10.5902/2179460X64900 (Original work published 9º de fevereiro de 2022)

Edição

Seção

Meio Ambiente