Caracterização da camada limite convectiva na floresta amazônica antes e depois da passagem de sistemas convectivos de mesoescala

Autores

DOI:

https://doi.org/10.5902/2179460X45217

Palavras-chave:

Floresta amazônica, Camada limite convectiva, Sistemas convectivos de mesoescala, Termodinâmica

Resumo

Neste estudo são descritas variáveis termodinâmicas, como temperatura e humidade, da camada limite atmosférica convectiva (CLC) e sua taxa de crescimento antecedente e posterior a passagem de sistemas convectivos de mesoescala (SCMs) na floresta Amazônica. Utilizando os dados obtidos através do experimento GoAmazon 2014/15, são analisados dois casos de estudo e uma amostra de dias nos quais ocorreram a passagem de SCMs. Os resultados mostram que a temperatura potencial equivalente da CLC sofre redução de 2 a 8K e a umidade específica é reduzida em até 2 g kg-1 após a passagem de um SCM, devido ao ar seco e frio trazido para a superfície através de correntes de ar descendentes (downdrafts). Essas duas variáveis em adição a outras, como fluxos de energia, são responsáveis por baixas taxas de crescimento da CLC, taxas que são reduzidas a 100 m h-1 nas horas seguintes após a precipitação cessar, quando comparado com dias sem precipitação. Este trabalho mostra uma quantificação de variáveis termodinâmicas da CLC durante condições prévias e posteriores à precipitação, que podem servir de base e complemento para futuros estudos nessa região.

Downloads

Não há dados estatísticos.

Biografia do Autor

Vanessa Monteiro, Pennsylvania State University, State College, PA

Engenheira Ambiental, M.Sc., pela Universidade Federal do Paraná. Mestre em Meteorologia pela Penn State University, onde atua pesquisando gases de efeito estufa

Referências

AHMED, F.; NEELIN, J. D. Reverse engineering the tropical precipitation–buoyancy relationship. Journal of the Atmospheric Sciences, v. 75, n. 5, p. 1587–1608, 2018.

BETTS, A. K. FIFE atmospheric boundary layer budget methods. J. Geophys. Res., v. 97, n. D17, p.18523–18531, 1992.

CECCHINI, M. A.; MACHADO, L. A.; ANDREAE, M. O.; MARTIN, S. T.; ALBRECHT, R. I.; ARTAXO, P.; BARBOSA, H. M.; BORRMANN, S.; FÜTTERER, D.; JURKAT, T. et al. Sensitivities of Amazonian clouds to aerosols and updraft speed. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 17, n. 16, p. 10037–10050, 2017.

COLLOW, A. B. M.; MILLER, M. A.; TRABACHINO, L. C. Cloudiness over the Amazon rainforest: Meteorology and thermodynamics. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 121, n. 13, p. 7990–8005, 2016.

DIAS-JUNIOR, C. Q.; DIAS, N. L.; FUENTES, J. D.; CHAMECKI, M. Convective storms and nonclassical low-level jets during high ozone level episodes in the Amazon region: An ARM/GoAmazon case study. Atmospheric environment, Elsevier, v. 155, p. 199–209, 2017.

FRAUND, M.; PHAM, D. Q.; BONANNO, D.; HARDER, T. H.; WANG, B.; BRITO, J.; SÁ, S. S. de; CARBONE, S.; CHINA, S.; ARTAXO, P. et al. Elemental mixing state of aerosol particles collected in central Amazonia during GoAmazon2014/15. Atmosphere, Multidisciplinary Digital Publishing Institute, v. 8, n. 9, p. 173, 2017.

FREIRE, L.; GERKEN, T.; RUIZ-PLANCARTE, J.; WEI, D.; FUENTES, J.; KATUL, G.; DIAS, N.; ACEVEDO, O.; CHAMECKI, M. Turbulent mixing and removal of ozone within an Amazon rainforest canopy. Journal of Geophysical Research: Atmospheres, Wiley Online Library, v. 122, n. 5, p.2791–2811, 2017.

FUENTES, J. D.; CHAMECKI, M.; SANTOS, R. M. Nascimento dos; RANDOW, C. V.; STOY, P. C.; KATUL, G.; FITZJARRALD, D.; MANZI, A.; GERKEN, T.; TROWBRIDGE, A. et al. Linking meteorology, turbulence, and air chemistry in the amazon rain forest. Bulletin of the American Meteorological Society, v. 97, n. 12, p. 2329–2342, 2016.

GARSTANG, M.; ULANSKI, S.; GRECO, S.; SCALA, J.; SWAP, R.; FITZJARRALD, D.; MARTIN, D.; BROWELL, E.; SHIPMAN, M.; CONNORS, V. et al. The Amazon boundary-layer experiment (ABLE 2B): A meteorological perspective. Bulletin of the American Meteorological Society, American Meteorological Society, v. 71, n. 1, p. 19–32, 1990.

GERKEN, T.; WEI, D.; CHASE, R. J.; FUENTES, J. D.; SCHUMACHER, C.; MACHADO, L. A.; ANDREOLI, R. V.; CHAMECKI, M.; SOUZA, R. A. F. de; FREIRE, L. S. et al. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest. Atmospheric Environment, Elsevier, v. 124, p. 64–76, 2016.

GIANGRANDE, S. E.; FENG, Z.; JENSEN, M. P.; COMSTOCK, J. M.; JOHNSON, K. L.; TOTO, T.; WANG, M.; BURLEYSON, C.; BHARADWAJ, N.; MEI, F. et al. Cloud characteristics, thermodynamic controls and radiative impacts during the observations and modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 17, n. 23, p. 14519–14541, 2017.

GU, D.; GUENTHER, A. B.; SHILLING, J. E.; YU, H.; HUANG, M.; ZHAO, C.; YANG, Q.; MARTIN, S. T.; ARTAXO, P.; KIM, S. et al. Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature communications, Nature Publishing Group, v. 8, p. 15541, 2017.

KUO, Y.-H.; SCHIRO, K. A.; NEELIN, J. D. Convective transition statistics over tropical oceans for climate model diagnostics: Observational baseline. Journal of the Atmospheric Sciences, v. 75, n. 5, p. 1553–1570, 2018.

LIU, Y.; SECO, R.; KIM, S.; GUENTHER, A. B.; GOLDSTEIN, A. H.; KEUTSCH, F. N.; SPRINGSTON, S. R.; WATSON, T. B.; ARTAXO, P.; SOUZA, R. A. et al. Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science advances, American Association for the Advancement of Science, v. 4, n. 4, p. 2547, 2018.

MACHADO, L. A.; CALHEIROS, A. J.; BISCARO, T.; GIANGRANDE, S.; DIAS, M. A. S.; CECCHINI, M. A.; ALBRECHT, R.; ANDREAE, M. O.; ARAUJO, W. F.; ARTAXO, P. et al. Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics, opernicus GmbH, v. 18, n. 9, p. 6461–6482, 2018.

MARENGO, J. A.; FISCH, G. F.; ALVES, L. M.; SOUSA, N. V.; FU, R.; ZHUANG, Y. Meteorological context of the onset and end of the rainy season in central Amazonia during the GoAmazon2014/5. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 17, n. 12, p. 7671, 2017.

MARTIN, S.; ARTAXO, P.; MACHADO, L.; MANZI, A.; SOUZA, R.; SCHUMACHER, C.; WANG, J.; BISCARO, T.; BRITO, J.; CALHEIROS, A. et al. The Green Ocean Amazon experiment (GoAmazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bulletin of the American Meteorological Society, v. 98, n. 5, p. 981–997, 2017.

MATHER, J. H.; VOYLES, J. W. The ARM climate research facility: A review of structure and capabilities. Bull. Am. Meteorol. Soc., v. 94, n. 3, p. 377–392, 2013.

PÖHLKER, M. L.; PÖHLKER, C.; DITAS, F.; KLIMACH, T.; ANGELIS, I. Hrabe de; ARAÚJO, A.; BRITO, J.; CARBONE, S.; CHENG, Y.; CHI, X. et al. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 16, n. 24, p. 15709–15740, 2016.

SÁ, S. S. d.; PALM, B. B.; CAMPUZANO-JOST, P.; DAY, D. A.; NEWBURN, M. K.; HU, W.; ISAACMAN-VANWERTZ, G.; YEE, L. D.; THALMAN, R.; BRITO, J. et al. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 17, n. 11, p. 6611–6629, 2017.

SCHIRO, K. A.; AHMED, F.; GIANGRANDE, S. E.; NEELIN, J. D. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proceedings of the National Academy of Sciences, National Acad. Sciences, v. 115, n. 18, p. 4577–4582, 2018.

SCHIRO, K. A.; NEELIN, J. D. Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection. Atmos Chem Phys, v. 18, p. 1997–2010, 2018.

SONG, F.; ZHANG, G. J. Improving trigger functions for convective parameterization schemes using GoAmazon observations. Journal of Climate, v. 30, n. 21, p. 8711–8726, 2017.

STRONG, C.; FUENTES, J.; GARSTANG, M.; BETTS, A. Daytime cycle of low-level clouds and the tropical convective boundary layer in southwestern Amazonia. Journal of Applied Meteorology, v. 44, n. 10, p. 1607–1619, 2005.

THALMAN, R.; SÁ, S. S. d.; PALM, B. B.; BARBOSA, H. M.; PÖHLKER, M. L.; ALEXANDER, M. L.; BRITO, J.; CARBONE, S.; CASTILLO, P.; DAY, D. A. et al. CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, Copernicus GmbH, v. 17, n. 19, p. 11779–11801, 2017.

ZHUANG, Y.; FU, R.; WANG, H. How do environmental conditions influence vertical buoyancy structure and shallow-to-deep convection transition across different climate regimes? Journal of the Atmospheric Sciences, v. 75, n. 6, p. 1909–1932, 2018.

Publicado

2020-08-28

Como Citar

Monteiro, V. (2020). Caracterização da camada limite convectiva na floresta amazônica antes e depois da passagem de sistemas convectivos de mesoescala. Ciência E Natura, 42, e2. https://doi.org/10.5902/2179460X45217