A enzima delta-aminolevullnato desidratase

Autores

  • Tatiana Emanuelli Departamento de Tecnologia e Ciências dos Alimentos, Centro de Ciências Rurais - CCR, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.

DOI:

https://doi.org/10.5902/2179460X34316

Resumo

A delta-aminolevulinato desidratase (ALA-D, E.C. 4.2.1.24) é uma enzima citosólica encontrada em bactérias, vegetais e animais. A reação catalisada pela ALA-D faz parte da rota de biossíntese dos compostos tetrapirrólicos (corrinas, bilinas, clorofilas e hemes). Esta enzima catalisa a condensação assimétrica de duas moléculas de ácido deltaaminolevulínico (ALA), formando porfobilinogênio. Um grupo Ɛ-amino de um resíduo de lisina presente no sítio ativo da enzima forma uma base de Schiff com a primeira molécula de substrato, a qual origina a cadeia lateral P (ácido propiônico) da molécula de porfobilinogênio. A segunda molécula de ALA originará a cadeia lateral A (ácido acético). A enzima de fígado bovino apresenta um peso molecular de 280 000 Da, sendo composta por 8 subunidades iguais, de 35 000 Da cada uma, no entanto apenas metade das subunidades parece estar envolvida na catálise. Independente da fonte, todas as enzimas ALA-D isoladas até o momento requerem um íon metálico divalente para estar ativas. Apesar do grande grau de similaridade existente entre os genes da ALA-D provenientes de diferentes organismos, a enzima requer metais diferentes para ativação, de acordo com a sua fonte (zinco para a enzima de animais, leveduras e algumas bactérias, e magnésio para a enzima de plantas). A enzima de mamíferos liga 8 íons zinco por octâmero. Foi detectada a existência de 2 sítios estruturalmente distintos para ligação do zinco na ALA-D bovina (sítios A e B). Os sítios A seriam compostos por 5 ligantes, entre eles um -SH de um resíduo de cisteína, e estariam envolvidos na ligação das 4 moléculas de zinco essenciais para a completa ativação da ALA-D (referidas como catalíticas), as quais parecem ser importantes para a união da segunda molécula de substrato, formação da primeira ligação entre as duas moléculas de ALA e união do produto. Os sítios B seriam compostos por 4 resíduos de cisteína e estariam envolvidos na união dos 4 íons zinco não essenciais (referidos como estruturais), os quais teriam a função de manter grupos -SH da enzima no estado reduzido. Tem sido proposto que o sítio A estaria presente também na ALA-D de vegetais, num número de 4 por octâmero, no entanto isto ainda não foi demonstrado. Cada octâmero da ALA-D de plantas apresentaria, ainda, 4 sítios B para união de íons magnésio essenciais e 8 sítios C para união de íons maqnesio não essenciais, cuja função é ativar a enzima. Na enzima de plantas a região que corresponde ao sítio B de união do íon metálico parece conter resíduos de aspartato ao invés dos resíduos de cisteína presentes na enzima de origem animal. Isto explicaria porque o sítio B da ALA-D de plantas liga Mg2+ ao invés de Zn2+. A ALA-D de E. Coli possui, aparentemente, 8 sítios para união de zinco (4 sítios A ou α e 4 sítios B ou β) e 8 sítios para união de magnésio (supostamente sítio C) por octâmero. Devido a sua natureza sulfidrílica a ALA-D é inibida por metais pesados, como chumbo e mercúrio, servindo como um índice para avaliar a intoxicação pelo metal. Além disso, as alterações patológicas observadas em alguns tipos de porfiria, na tirosinemia hepatorenal e após exposição a chumbo e mercúrio parecem estar relacionadas à inibição desta enzima. A inibição da ALA-D prejudica a biossíntese do heme e paralelamente provoca um acúmulo de ácido 5-aminolevulínico (seu substrato), que pode atuar como um prooxidante, além ser um potente agonista dos autoreceptores gabaérgicos.

Downloads

Referências

AMAZARRAV, M.T.R. Efeito de metais pesados em plantas: delta-aminolevulinato deidratase em Ricinus communis. Porto Alegre, Curso de Pós-graduação em Ecologia, UFRGS, 1986. Dissertação de Mestrado.

BARNARD, G.F.; ITOH, R.; HOHBERGER, L.H. and SHEMIN, D. Mechanism of porphobilinogen synthase - Possible role of essential thiol groups. J. Biol. Chem. 252: 8965-8974 (1977).

BARREIRO, O.L.C. 5-Aminolaevulinate hydro-Iyase from yeast. Isolation and purification. Biochim. Biophys. Acta 139: 479-486 (1967).

BATLLE, A.M. del C.; FERRAMOLA, A.M.; GRINSTEN, M. Purification and general properties of delta-aminolaevulinate dehydratase from cow liver. Biochem. J. 104: 244-249 (1967).

BATLLE, A.M. del C. & STELLA, A.M. Delta aminolaevulinate dehydratase: its mechanism of action. Int. J. Biochem. 9: 861-864 (1978).

BATIISTUZZI, G.; PETRUCCI, R.; SILVAGNI, L.; URBANI, F.R.; CAIOLA, S. Delta-aminolevulinate dehydratase:a new genetic polymorphism in man. Ann. Hum. Genet. 45: 223-229 (1981).

BECHARA, E.J.H.; MEDEIROS, M.H.G.; MONTEIRO, H.P.; HERMES-LlMA, M.; PEREIRA, B.; DEMASI, M.; COSTA, CA; ADBALLA, D.S.P.; ONUKI, J.; WENDEL, C.MA & MASCI, P.D. A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Química Nova. 16: 385-392 (1993).

BELLlNASO, M.L. Estudo comparativo da delta-aminolevulinato deidratase em eritrócito humano e fígado de peixes (Pimelodus maculatus) e o efeito de metais pesados. Porto Alegre, Curso de Pós-graduação em Bioquímica, UFRGS, 1985. Dissertação de Mestrado.

BEVAN, D.R.; BODLAENDER, P.; SHEMIN D. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. J. Biol. Chem. 255 (5): 2030-2035 (1980).

BEVERSMANN, D. & COX, M. Affinity labelling of 5-aminolevulinic acid dehydratase with 2-bromo-3-(5-imidazolyl) propionic acid. Biochim. Biophys. Acta 788: 162-168 (1984).

BISHOP, T.R.; FRELlN, L.P. AND BOVER, S.M. Isolation of rat liver Delta-aminolevulinate dehydratase (ALAD) cDNA clone: evidence for unequal ALAD gene dosage among inbred mouse strains. Nucleic Acid Res. 14: 10115 (1986).

BISHOP, T.R.; HODES, Z.I.; FRELlN, L.P. & BOYER, S.H. Cloning and sequence of mouse erythroid delta-aminolevulinate dehydratase cDNA Nucleic Acid Res. 17(4):1775 (1989).

BLOCK, C.; LOHMANN, R.D. and BEYERSMANN, D. Probing of active site residues of the zinc enzyme 5-aminolevulinate dehydratase by spin and fluorescence labels. Bio!' Chem. Hoppe-Seyler 371: 1145-1152 (1990).

BOESE, Q.F.; SPANO, AJ.; LI, J. & TIMKO, M.P. Delta-Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J. Biol. Chem. 266: 17060-17066 (1991).

BONSIGNORE, D. L 'attivitá ALA-deidratasica eritrocitaria quale test diagnostico nel saturnismo professionale. Med. Lav. 57: 647-654 (1966).

BORDER, EA; CANTRELL, A.C.; KILROE-SMITH, TA The in vitro effect of zinc and other metal ions on the activity of human erythrocyte 0-aminolaevulinic acid dehydratase. Environ. Res. 11:319-325 (1976).

BORRALHO, L.M. Ácido delta-aminolevulínico desidratase de Saccharomyces cerevisiae: tópicos sobre as propriedades físico-químicas, cinéticas e regulatórias. Rio de Janeiro, Curso de Pós-Graduação em Bioquímica, UFRJ, 1990. Tese de Doutorado.

BORRALHO, L.M.; MALAMUD, D.R.; PANEK, AD.; TENAN, M.N.; OLIVEIRA, D.E. & MATTOON, J.R. Parallel changes in catabolite repression of heam biosynthesis and cytochromes in repressionresistant mutants of Saccharomyces cerevisiae. 4., Gen. Microbiol. 135: 1217-1227 (1989).

BORRALHO, L.M.; ORTIZ, C.H.D.; PANEK, AD. & MATTOON, J.R. Purification of delta-aminolevulinate dehydratase from genetically engeneered yeast. Yeast 6: 319-330 (1990).

BRENNAN, M.JW. & CANTRILL, R.C. Delta-Aminclevulinic acid is a potent agonist for GABA autoreceptors. Nature (Londonl 280: 514-515 (1979).

CHAUDHRY, AG.; GORE, M.G. and JORDAN, P.M. Studies on the inactivation of 5-aminolevulinate dehydratase by alkylation. Biochem. Soc. Trans. 4:301-303 (1976).

CHAUHAN, S. & O 'BRIAN, M.R. A mutant Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules. 4., Biol. Chem. 270(34):19823-19827 (1995).

CHEH, A & NEILANDS, J.B. Zinc, an essential metal ion for beef liver delta-aminolevulinate dehydratase. Biochem. Biophys. Res. Commun. 55: 1060-1063 (1973).

CHEH, A. & NEILANDS, J.L. The delta-aminolevulinate dehydratases: molecular and environmental properties. Struct. Bonding (Berlin) 29: 123-169 (1976).

CHINARRO, S.; STELLA, AM.; BERGES, L.; SALAMANCA, R.E.; BATLLE, A.M. del C. Aminolevulinato dehidratasa: properties y mechanismo de acción. N. Arch. Fac. Med. 41:61-70 (1983).

DEMASI, M.; PENATTI, CA; DELUCIA, R. & BECHARA, E.J.H. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radic. Biol. Med. 20: 291-299 (1996).

DENT, A.J.; BEYERSMANN, D.; BLOCK, C. and HASNAIN, S.S. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended X-ray absorption fine structure. Biochemistry 29: 7822-7828 (1990).

DRESEL, E.I.B. & FALK, J.E. Conversion of delta-aminolaevulinic acid to porphobilinogen in a tissue system. Nature 172:1185 (1953).

ECHELARD, Y.; DYMETRYZYN, J.; DROLET, M. & SASARMAN, A. Nucleotide sequence of the hemB gene of Escherichia coli. MoI. Gen. Genet. 214: 503-508 (1988).

EMANUELLI, T.; ROCHA, J.B.T.; PEREIRA, M.E.; PORCIUNCULA, L.O.; MORSCH, V.M.; MARTINS, AF. & SOUZA, D.O.G. Effect of mercuric chloride intoxication and dimercaprol treatment on delta-aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. Toxicol. 79: 136-143 (1996a).

EMANUELLI, T.; ROCHA, J.B.T.; PEREIRA, M.E.; NASCIMENTO; P.C.; BEBER, F.A. & SOUZA, D.O.G. Delta-aminolevulinate dehydratase inhibition by 2,3-dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteinyl residues in a reduced state. (Submetido para publicação).1996b.

FINELLI, V.N.; KLAUDER, D.S.; KARAFFA, MA and PETERING, H.G. Interaction of zinc and lead on delta-aminolevulinate dehydratase. Biochem. Biophys. Res. Commun. 65:303-311 (1975).

FINELLI, V.N.; MURHTY, L.; PEIRANO, W.B.; PETERING, H.G. Delta-aminolevulinate dehydratase, a zinc dependent enzyme. Biochem. Biophys. Res. Commun. 60:1418-1424 (1974).

FISCHBEIN, A.; WALLACE, J.; ANDERSON, K.E.; SASSA, S.; KON, S.; RHOL, AN. & KAPPAS, A. Lead poisoning in an art conservator. J. Am. Med. Assoc. 247: 2007-2009 (1982).

FUJITA, H.; ORII, Y.; SAND, S. Evidence of increased syntesis of delta-aminolevulinic acid dehydratase in experimental lead- poisoned rats. Biochim. Biophys. Acta 678: 39-50 (1981).

GIBBS, P.N.B.; GORE, M.G. & JORDAN, P.M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem. J. 225:573-580 (1985).

GIBBS, P.N.B. & JORDAN, P.M. Identification of Iysine at the active site of human delta-aminolaevulinate dehydratase. Biochem. J. 236: 447-451 (1986).

GIBSON, K.D.; NEUBERGER, A; SCOTT, J.J. The purification and properties of delta-aminolaevulinic acid dehydratase. Biochem. J. 61: 618-629 (1955).

GOERING, P.L. Lead protein interactions as a basis for lead toxicity. Neurotoxicology. 14:45-60 (1993).

GOERING, P.L. & FOWLER, BA Regulation of lead inhibition of delta-aminolevulinic acid dehydratase by a low molecular weight, high affinity renal lead-binding protein. J. Pharmacol. Exp. Therap. 231 :66-71 (1984).

GOERING, P.L. & FOWLER, BA Mechanism of renal lead-binding protein reversal of delta-aminolevulinic acid dehydratase inhibition by lead. J. Pharmacol. Exp. Therap. 234: 365-371 (1985).

GOERING, P.L.; MISTRY, P. & FOWLER, B.A. A low molecular weight lead-binding protein in brain attenuates lead inhibition of delta-aminolevulinic acid dehydratase:comparison with a renal lead-binding protein. J. Pharmacol. Exp. Therap. 237:220-225 (1986).

GRANICK, S. & BEALE, S.1. Hemes, chlorophills and related compounds:

Biosynthesis. Adv. Enzymol. 46: 33-203 (1978).

GRANICK, S. & MAUZERALL, D. Porphyrin biosynthesis in erythrocytes. II. Enzymes converting delta-aminolevulinic acid to coproporphyrinogen. J. Biol. Chem. 232:1119-1140 (1958).

GUO, G.G.; GU, M. & ETLlNGER, J.D. 24--kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. The Journal of Biological Chemistry 269(17):12399-12402 (1994).

HASNIAN, S.S.; WARDELL, E.M.; GARNER, C.D.; SCHLOSSER, M. & BEYERSMANN, D. Extended-X-ray-absorption-fine-structure investigations of zinc in 5-aminolaevulinate dehydratase. Biochem. J. 230:625-633 (1985).

HERNEBERG, S.; NIKKANEN, J.; MELLlN, G.; LlLIUS, H. Delta-aminolevulinic acid dehydratase as a measure of lead exposure. Arch. Environ. Health 21 :140-145 (1970).

HODSON, P.V.; BLUNT, B.R.; SPRY, D.J.; AUSTEN, K. Evaluation of erythrocyte delta-amino levulinic acid dehydratase activity as a short-term indicator in fish of a harmful exposure to lead. J. Fish. Res. Board Cano 33:501-508 (1977).

JAFFE, E.K. Predicting the Zn(lI) ligands in metalloproteins: case study, porphobilinogen synthase. Comm. Inorg. Chem. 15:67-93 (1993).

JAFFE, E.K.; ABRAMS, W.R.; KAEMPFEN, H.X. & HARRIS, Jr. KA 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinco Biochem. 31: 2113-2123 (1992).

JAFFE, E.K.; ALI, S.; MITCHELL, L.W.; TAYLOR, K.M.; VOLlN, M. & MARKHAM, G.D. Characterization of the role of the stimulatory magnesium of Escherichia coli porphobilinogen synthase. Biochem. 34:244-251 (1995).

JAFFE, E.K. & HANES, D. Dissection of the early steps in the porphobilinogen synthase catalysed reaction - Requirement for Schiff 's base formation. J. Biol. Chem. 261 :9348-9353 (1986).

JAFFE, E.K. & MARKHAN, G.D. Carbon-13 NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein. Biochem. 26:4258-4264 (1987).

JAFFE, E.K.; MARKHAM, G.D. & RAJAGOPALAN, J.S. 15N and 13C NMR studies of ligands bound to the 280 000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate. Biochem. 29:8345-8350 (1990).

JAFFE, E.K.; SALOWE, S.P.; CHEN, N.T. & DE HAVEN, PA Porphobilinogen synthase modification with methylmethanethiosulfonate-A protocol for the investigation of metalloproteins. J. Biol. Chem. 259:5032-5036 (1984).

JAFFE, E.K.; VOLlN, M. & MYERS, C.B. 5-Chloro[1,4_13C] levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II).Biochem. 33: 11554-11562 (1994).

JORDAN, P.M. & GIBBS, P.N.B. Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem. J. 227: 1015-1020 (1985).

JORDAN, P.M.; GORE, M.G. & CHAUDHRY, A.G. Subunit modification of 5-aminolevulinate dehydratase involving cysteine residues Biochem. Soc. Trans. 4:762-763 (1976).

JORDAN, P.M. & SEEHRA, J.S. Carbon-13 NMR as a probe for the study of enzyme-catalyzed reactions. Mechanism of action of 5-aminolevulinic acid dehydratase. FEBS lett. 114: 283-286 (1980).

KAPPAS, A.; SASSA, S.; GALBRAITH, R.A.; NORDMANN, Y. The Phorphyrias. In: The Metabolic Bases of Inherited Disease, eds. Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D. (McGraw Hill, New York), pp. 2103-2160 (1995).

LASCELLES, J. The regulation of heme and chlorophyll synthesis in bacteria. Ann. New York Acad. Sci. 244: 334-347 (1975).

LI, J.M.; RUSSELL, C.S.; COSLOY, S.D. & SHARON, D. The structure of the Escherichia coli hemB gene. Gene 75: 177-184 (1989).

MATTERS, G.L. & BEALE, S.I. Structure and expression of the Chlamydomonas reeinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, delta-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant. MoI. Biol. 27(3): 607-617 (1995).

MENON, IA & SHEMIN, D. Concurrent decrease of enzymic activities concerned with the synthesis of coenzyme B12 and of propionic acid in Propionibacteria Arch. Biochem. Biophys. 121: 304-310 (1967).

MEREDITH, PA; MOORE, M.R.; GOLDBERG, A Erythrocyte ALA dehydratase activity and blood protoporphyrin concentrations as indices of lead exposure and altered haem biosynthesis. Clin. Sci. MoI. Med. 56:61-69 (1979).

MITCHELL, L.W. & JAFFE, E.K. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch. Biochem. Biophys. 300:169-177 (1993).

MITCHELL, R.A.; DRAKE, J.E.; WITTLlN, L.A.; REJENT, TA Erythrocyte porphobilinogen synthase (Delta-aminolaevulinate dehydratase) activity: a reliable and quantitative indicator of lead exposure in humans. Clin. Chem. 23:105-111 (1977).

MITCHELL, G.A.; LAMBERT, M.; TANGUAY, R.M. Hypertyrosinemia In: The Metabolic Bases of Inherited Disease, eds. Scriver, C.R.; Beaudet, AL.; Sly, W.S.; Valle, D. (McGraw Hill, New York), pp. 1077-1106 (1995).

MONTEIRO, H.P.; ABDALLA, D.S.P.; AUGUSTO, O. & BECHARA, E.J.H. Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch. Biochem. Biophys. 271(1):206-216 (1989).

MUTHUKRISHNAN, S.; MALATHI, K. & PADMANABAN, G. delta-Aminolaevulinate dehydratase, the rgulatory enzyme of the haembiosynthetic pathway in Neurospora crassa Biochem. J. 129: 31-37 (1972).

NAKAO, K.; WADA, O.; YANO, Y. Delta-aminolevulinic acid dehydratase activity in erythrocytes for the evaluation of lead poisoning. Clin. Chim. Acta 19:319-325 (1968).

NANDI, D.L. Delta-Aminolevulinic acid synthase of Rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. Z. Naturforsch. 33C:799-800 (1978).

NANDI, D.L.; BAKER-COHEN, K.F. & SHEMIN, D. Delta-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides: I. Isolation and properties. J. Biol. Chem. 243: 1224-1230 (1968).

NELSON, H.M.; UGHES, MA; MEREDITH; PA Zinc, copper and delta-aminolevulinic acid dehydratase in vitro and in vivo. Toxicology 21: 261-266 (1981).

PEREIRA, B.; CURI, R.; KOKUBUN, E. & BECHARA, J.H. 5-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. J. Appl. Physiol. 72(1): 226-230 (1992).

PETROVICH, R.M.; LlTWIN, S. & JAFFE, E.K. Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(lI) and monovalent cations. J. Biol. Chem. 271(15): 8692-8699 (1996).

PETRUCCI, R.; LEONARDI, A.; BATTISTUZZI, G. The genetic polymorphism of human delta-aminolevulinate dehydratase in Italy. Hum. Genet. 60: 289-290 (1982).

ROCHA, J.B.T.; FREITAS, A.J.; MARQUES, M.B.; PEREIRA, M.E.; EMANUELLI, T.; SOUZA, D.O. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Brazilian 4.:. Med. Biol. Res. 26:1077-1083 (1993).

ROCHA, J.B.T.; PEREIRA, M.E.; EMANUELLI, T.; CHRISTOFARI, R.S.; SOUZA, D.O. Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on delta-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver, kidney and blood of suckling rats. Toxicology 100:27-37 (1995).

RODRIGUES, A.L.S. Delta-aminolevulinato desidratase (E.C.: 4.2.1.24) em sangue de Pimelodus Maculatus (Pisces, Pimelodidae): características bioquímicas e efeito de metais pesados. Porto Alegre, Curso de Pós-Graduação em Bioquímica, UFRGS, 1987. Dissertação de Mestrado.

RODRIGUES, A.L., BELLlNASO, M.L. & DICK, T. Effect of some metal ions on blood and liver delta-aminolevulinate dehydratase of Pimelodus maculatus (Pisces, Pimelodidae). Comp. Biochem. Physiol. 94B: 65-69 (1989).

RODRIGUES, A.L.S.; ROCHA, J.B.T.; PEREIRA, M.E. & SOUZA, D.O. Delta-aminolevulinic acid dehydratase activity in weanling and adult rats exposed to lead acetate. Buli. Environ. Contam. Toxicol. 57:47-53 (1996).

SASSA, S.; FUJITA, H. & KAPPAS, A. Genetic and chemical influences on heme biosynthesis. In: A Kotyk, J. Skoda; V. Paces and V. Kostka (Eds.), Highlights of Modem Biochemistry, VSP, Utrecht, Vol. 1, pp. 329-338 (1989).

SCHAUMBURG, A; SCHNEIDER-POETSH, A.A.W. & ECKERSKORN, C. Characterization of plastid 5-aminolevulinate dehydratase (ALA-D, EC 4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non plant ALA-D enzymes. Z. Naturforsch. 47C: 77-84 (1991 ).

SEYDOUX, F.; MALHOTRA, P.O. & BERNHARD, S.A. Half-site reactivity. Crit. Rev. Biochem. 2:227-257 (1974).

SHEMIN, D. 5-Aminolaevulinic acid dehydratase: structure, function, and mechanism. Phil. Trans. R. Soc. Lond. 273B: 109- 115 (1976).

SHIBATA, H. & OCHIAI, H. Purification and properties of delta-aminolevulinic acid dehydratase from radish cotyledons. Plant & Cell Physiol., 18: 421-429 (1977).

SPENCER, P. & JORDAN, P. M. Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem. J. 290: 279-287 (1993).

SPENCER, P. & JORDAN, P.M. Investigation of the nature of the two metal-binding sites in 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem. J. 300:373-381 (1994).

SPENCER, P. & JORDAN, P.M. Characterization of the two 5-aminolaevulinic acid binding sites, the A- and P-sites, of 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem. J. 305: 151-158 (1995).

SOMMER, R. & BEYERSMANN, D. Zinc and cadmium in 5-aminolevulinic acid dehydratase. Equilibrium, kinetic, and 113Cd-nmr-studies. J. Inorg. Biochem. 20: 131-145 (1984).

TAMAI, H.; SHIOI, Y. & SASA, T. Purification and characterization of delta-aminolevulinic acid dehydratase from Chlorella regularis. Plant & Cell Physiol. 20(2): 435-444 (1979).

TIGIER, H.A.; BATLLE, AM. del C.; LOCASCIO, G.A. Porphyrin biosynthesis in soybean callus tissue system. Isolation, purification and general properties of delta-aminolaevulinate dehydratase. Biochem. Biophys. Acta 151 :300-302 (1968).

TIGIER, H.A.; BATLLE, A.M. del C.; LOCASCIO, G.A. Porphyrin biosynthesis in the soybean callus tissue system. 11. Improved purification and some properties delta-aminolaevulinic acid dehydratase. Enzymologia 38: 43-56 (1970).

TSUKAMOTO, I.; YOSHINAGA, T.; and SANO, S. The role of zinc with special reference to the essential thiol groups in delta- aminolevulinic acid dehydratase of bovine liver. Biochim. Biophys. Acta 570: 167-178 (1979).

TSUKAMOTO, I.; YOSHINAGA, T.; SANO, S. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase. Int. J. Biochem. 12: 751-756 (1980).

VERGNANO, C.; CARTASEGNA, C. & BONSIGNORE, D. Regolazione allosterica della attivita 'delta-amino-Ievulinico-deidratasica eritrocitaria. - Nota I. BoII. Soc. Ital. Biol. Sper. 64(7): 692-695 (1968).

WETMUR, J.G. Influence of the common human delta-aminolevulinate dehydratase polymorphism on lead body burden. Environmental Health Perspectives 102, sup. 3:215-219 (1994).

WETMUR, J.G.; BISHOP, D.F.; CANTELMO, C. & DESNICK, R.J. Human delta-aminolevulinate dehydratase: Nucleotide sequence of a full-length cDNA clone. Proc. Natl. Acad. Sci. USA 83:7703-7707 (1986).

WILSON, E.L.; BURGER, P.E.; DOWDLE, E.B. Beef-liver 5- aminolevulinic acid dehydratase - Purification and properties. Eur. J. Biochem. 29: 563-571 (1972).

WU, W.; SHEMIN, D.; RICHARDS, K.E.; WILLlAMS, A.C. The quaternary structure of delta-aminolevulinic acid dehydratase from bovine liver. Proc. Natl. Acad. Sci. U.S.A. 71: 1767-1770 (1974).

YUBISUI, T. & YONEYAMA, Y. Delta-Aminolevulinic acid synthetase of Rhodopseudomonas spheroides: purification and properties of the enzyme. Arch. Biochem. Biophys. 150: 77-85 (1972).

Downloads

Publicado

1997-12-10

Como Citar

Emanuelli, T. (1997). A enzima delta-aminolevullnato desidratase. Ciência E Natura, 19(19), 201–224. https://doi.org/10.5902/2179460X34316