A enzima delta-aminolevullnato desidratase

Autores

  • Tatiana Emanuelli Departamento de Tecnologia e Ciências dos Alimentos, Centro de Ciências Rurais - CCR, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.

DOI:

https://doi.org/10.5902/2179460X34316

Resumo

A delta-aminolevulinato desidratase (ALA-D, E.C. 4.2.1.24) é uma enzima citosólica encontrada em bactérias, vegetais e animais. A reação catalisada pela ALA-D faz parte da rota de biossíntese dos compostos tetrapirrólicos (corrinas, bilinas, clorofilas e hemes). Esta enzima catalisa a condensação assimétrica de duas moléculas de ácido deltaaminolevulínico (ALA), formando porfobilinogênio. Um grupo Ɛ-amino de um resíduo de lisina presente no sítio ativo da enzima forma uma base de Schiff com a primeira molécula de substrato, a qual origina a cadeia lateral P (ácido propiônico) da molécula de porfobilinogênio. A segunda molécula de ALA originará a cadeia lateral A (ácido acético). A enzima de fígado bovino apresenta um peso molecular de 280 000 Da, sendo composta por 8 subunidades iguais, de 35 000 Da cada uma, no entanto apenas metade das subunidades parece estar envolvida na catálise. Independente da fonte, todas as enzimas ALA-D isoladas até o momento requerem um íon metálico divalente para estar ativas. Apesar do grande grau de similaridade existente entre os genes da ALA-D provenientes de diferentes organismos, a enzima requer metais diferentes para ativação, de acordo com a sua fonte (zinco para a enzima de animais, leveduras e algumas bactérias, e magnésio para a enzima de plantas). A enzima de mamíferos liga 8 íons zinco por octâmero. Foi detectada a existência de 2 sítios estruturalmente distintos para ligação do zinco na ALA-D bovina (sítios A e B). Os sítios A seriam compostos por 5 ligantes, entre eles um -SH de um resíduo de cisteína, e estariam envolvidos na ligação das 4 moléculas de zinco essenciais para a completa ativação da ALA-D (referidas como catalíticas), as quais parecem ser importantes para a união da segunda molécula de substrato, formação da primeira ligação entre as duas moléculas de ALA e união do produto. Os sítios B seriam compostos por 4 resíduos de cisteína e estariam envolvidos na união dos 4 íons zinco não essenciais (referidos como estruturais), os quais teriam a função de manter grupos -SH da enzima no estado reduzido. Tem sido proposto que o sítio A estaria presente também na ALA-D de vegetais, num número de 4 por octâmero, no entanto isto ainda não foi demonstrado. Cada octâmero da ALA-D de plantas apresentaria, ainda, 4 sítios B para união de íons magnésio essenciais e 8 sítios C para união de íons maqnesio não essenciais, cuja função é ativar a enzima. Na enzima de plantas a região que corresponde ao sítio B de união do íon metálico parece conter resíduos de aspartato ao invés dos resíduos de cisteína presentes na enzima de origem animal. Isto explicaria porque o sítio B da ALA-D de plantas liga Mg2+ ao invés de Zn2+. A ALA-D de E. Coli possui, aparentemente, 8 sítios para união de zinco (4 sítios A ou α e 4 sítios B ou β) e 8 sítios para união de magnésio (supostamente sítio C) por octâmero. Devido a sua natureza sulfidrílica a ALA-D é inibida por metais pesados, como chumbo e mercúrio, servindo como um índice para avaliar a intoxicação pelo metal. Além disso, as alterações patológicas observadas em alguns tipos de porfiria, na tirosinemia hepatorenal e após exposição a chumbo e mercúrio parecem estar relacionadas à inibição desta enzima. A inibição da ALA-D prejudica a biossíntese do heme e paralelamente provoca um acúmulo de ácido 5-aminolevulínico (seu substrato), que pode atuar como um prooxidante, além ser um potente agonista dos autoreceptores gabaérgicos.

Downloads

Não há dados estatísticos.

Referências

AMAZARRAV, M.T.R. Efeito de metais pesados em plantas: delta-aminolevulinato deidratase em Ricinus communis. Porto Alegre, Curso de Pós-graduação em Ecologia, UFRGS, 1986. Dissertação de Mestrado.

BARNARD, G.F.; ITOH, R.; HOHBERGER, L.H. and SHEMIN, D. Mechanism of porphobilinogen synthase - Possible role of essential thiol groups. J. Biol. Chem. 252: 8965-8974 (1977).

BARREIRO, O.L.C. 5-Aminolaevulinate hydro-Iyase from yeast. Isolation and purification. Biochim. Biophys. Acta 139: 479-486 (1967).

BATLLE, A.M. del C.; FERRAMOLA, A.M.; GRINSTEN, M. Purification and general properties of delta-aminolaevulinate dehydratase from cow liver. Biochem. J. 104: 244-249 (1967).

BATLLE, A.M. del C. & STELLA, A.M. Delta aminolaevulinate dehydratase: its mechanism of action. Int. J. Biochem. 9: 861-864 (1978).

BATIISTUZZI, G.; PETRUCCI, R.; SILVAGNI, L.; URBANI, F.R.; CAIOLA, S. Delta-aminolevulinate dehydratase:a new genetic polymorphism in man. Ann. Hum. Genet. 45: 223-229 (1981).

BECHARA, E.J.H.; MEDEIROS, M.H.G.; MONTEIRO, H.P.; HERMES-LlMA, M.; PEREIRA, B.; DEMASI, M.; COSTA, CA; ADBALLA, D.S.P.; ONUKI, J.; WENDEL, C.MA & MASCI, P.D. A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Química Nova. 16: 385-392 (1993).

BELLlNASO, M.L. Estudo comparativo da delta-aminolevulinato deidratase em eritrócito humano e fígado de peixes (Pimelodus maculatus) e o efeito de metais pesados. Porto Alegre, Curso de Pós-graduação em Bioquímica, UFRGS, 1985. Dissertação de Mestrado.

BEVAN, D.R.; BODLAENDER, P.; SHEMIN D. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. J. Biol. Chem. 255 (5): 2030-2035 (1980).

BEVERSMANN, D. & COX, M. Affinity labelling of 5-aminolevulinic acid dehydratase with 2-bromo-3-(5-imidazolyl) propionic acid. Biochim. Biophys. Acta 788: 162-168 (1984).

BISHOP, T.R.; FRELlN, L.P. AND BOVER, S.M. Isolation of rat liver Delta-aminolevulinate dehydratase (ALAD) cDNA clone: evidence for unequal ALAD gene dosage among inbred mouse strains. Nucleic Acid Res. 14: 10115 (1986).

BISHOP, T.R.; HODES, Z.I.; FRELlN, L.P. & BOYER, S.H. Cloning and sequence of mouse erythroid delta-aminolevulinate dehydratase cDNA Nucleic Acid Res. 17(4):1775 (1989).

BLOCK, C.; LOHMANN, R.D. and BEYERSMANN, D. Probing of active site residues of the zinc enzyme 5-aminolevulinate dehydratase by spin and fluorescence labels. Bio!' Chem. Hoppe-Seyler 371: 1145-1152 (1990).

BOESE, Q.F.; SPANO, AJ.; LI, J. & TIMKO, M.P. Delta-Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J. Biol. Chem. 266: 17060-17066 (1991).

BONSIGNORE, D. L 'attivitá ALA-deidratasica eritrocitaria quale test diagnostico nel saturnismo professionale. Med. Lav. 57: 647-654 (1966).

BORDER, EA; CANTRELL, A.C.; KILROE-SMITH, TA The in vitro effect of zinc and other metal ions on the activity of human erythrocyte 0-aminolaevulinic acid dehydratase. Environ. Res. 11:319-325 (1976).

BORRALHO, L.M. Ácido delta-aminolevulínico desidratase de Saccharomyces cerevisiae: tópicos sobre as propriedades físico-químicas, cinéticas e regulatórias. Rio de Janeiro, Curso de Pós-Graduação em Bioquímica, UFRJ, 1990. Tese de Doutorado.

BORRALHO, L.M.; MALAMUD, D.R.; PANEK, AD.; TENAN, M.N.; OLIVEIRA, D.E. & MATTOON, J.R. Parallel changes in catabolite repression of heam biosynthesis and cytochromes in repressionresistant mutants of Saccharomyces cerevisiae. 4., Gen. Microbiol. 135: 1217-1227 (1989).

BORRALHO, L.M.; ORTIZ, C.H.D.; PANEK, AD. & MATTOON, J.R. Purification of delta-aminolevulinate dehydratase from genetically engeneered yeast. Yeast 6: 319-330 (1990).

BRENNAN, M.JW. & CANTRILL, R.C. Delta-Aminclevulinic acid is a potent agonist for GABA autoreceptors. Nature (Londonl 280: 514-515 (1979).

CHAUDHRY, AG.; GORE, M.G. and JORDAN, P.M. Studies on the inactivation of 5-aminolevulinate dehydratase by alkylation. Biochem. Soc. Trans. 4:301-303 (1976).

CHAUHAN, S. & O 'BRIAN, M.R. A mutant Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase with an altered metal requirement functions in situ for tetrapyrrole synthesis in soybean root nodules. 4., Biol. Chem. 270(34):19823-19827 (1995).

CHEH, A & NEILANDS, J.B. Zinc, an essential metal ion for beef liver delta-aminolevulinate dehydratase. Biochem. Biophys. Res. Commun. 55: 1060-1063 (1973).

CHEH, A. & NEILANDS, J.L. The delta-aminolevulinate dehydratases: molecular and environmental properties. Struct. Bonding (Berlin) 29: 123-169 (1976).

CHINARRO, S.; STELLA, AM.; BERGES, L.; SALAMANCA, R.E.; BATLLE, A.M. del C. Aminolevulinato dehidratasa: properties y mechanismo de acción. N. Arch. Fac. Med. 41:61-70 (1983).

DEMASI, M.; PENATTI, CA; DELUCIA, R. & BECHARA, E.J.H. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radic. Biol. Med. 20: 291-299 (1996).

DENT, A.J.; BEYERSMANN, D.; BLOCK, C. and HASNAIN, S.S. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended X-ray absorption fine structure. Biochemistry 29: 7822-7828 (1990).

DRESEL, E.I.B. & FALK, J.E. Conversion of delta-aminolaevulinic acid to porphobilinogen in a tissue system. Nature 172:1185 (1953).

ECHELARD, Y.; DYMETRYZYN, J.; DROLET, M. & SASARMAN, A. Nucleotide sequence of the hemB gene of Escherichia coli. MoI. Gen. Genet. 214: 503-508 (1988).

EMANUELLI, T.; ROCHA, J.B.T.; PEREIRA, M.E.; PORCIUNCULA, L.O.; MORSCH, V.M.; MARTINS, AF. & SOUZA, D.O.G. Effect of mercuric chloride intoxication and dimercaprol treatment on delta-aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. Toxicol. 79: 136-143 (1996a).

EMANUELLI, T.; ROCHA, J.B.T.; PEREIRA, M.E.; NASCIMENTO; P.C.; BEBER, F.A. & SOUZA, D.O.G. Delta-aminolevulinate dehydratase inhibition by 2,3-dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteinyl residues in a reduced state. (Submetido para publicação).1996b.

FINELLI, V.N.; KLAUDER, D.S.; KARAFFA, MA and PETERING, H.G. Interaction of zinc and lead on delta-aminolevulinate dehydratase. Biochem. Biophys. Res. Commun. 65:303-311 (1975).

FINELLI, V.N.; MURHTY, L.; PEIRANO, W.B.; PETERING, H.G. Delta-aminolevulinate dehydratase, a zinc dependent enzyme. Biochem. Biophys. Res. Commun. 60:1418-1424 (1974).

FISCHBEIN, A.; WALLACE, J.; ANDERSON, K.E.; SASSA, S.; KON, S.; RHOL, AN. & KAPPAS, A. Lead poisoning in an art conservator. J. Am. Med. Assoc. 247: 2007-2009 (1982).

FUJITA, H.; ORII, Y.; SAND, S. Evidence of increased syntesis of delta-aminolevulinic acid dehydratase in experimental lead- poisoned rats. Biochim. Biophys. Acta 678: 39-50 (1981).

GIBBS, P.N.B.; GORE, M.G. & JORDAN, P.M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem. J. 225:573-580 (1985).

GIBBS, P.N.B. & JORDAN, P.M. Identification of Iysine at the active site of human delta-aminolaevulinate dehydratase. Biochem. J. 236: 447-451 (1986).

GIBSON, K.D.; NEUBERGER, A; SCOTT, J.J. The purification and properties of delta-aminolaevulinic acid dehydratase. Biochem. J. 61: 618-629 (1955).

GOERING, P.L. Lead protein interactions as a basis for lead toxicity. Neurotoxicology. 14:45-60 (1993).

GOERING, P.L. & FOWLER, BA Regulation of lead inhibition of delta-aminolevulinic acid dehydratase by a low molecular weight, high affinity renal lead-binding protein. J. Pharmacol. Exp. Therap. 231 :66-71 (1984).

GOERING, P.L. & FOWLER, BA Mechanism of renal lead-binding protein reversal of delta-aminolevulinic acid dehydratase inhibition by lead. J. Pharmacol. Exp. Therap. 234: 365-371 (1985).

GOERING, P.L.; MISTRY, P. & FOWLER, B.A. A low molecular weight lead-binding protein in brain attenuates lead inhibition of delta-aminolevulinic acid dehydratase:comparison with a renal lead-binding protein. J. Pharmacol. Exp. Therap. 237:220-225 (1986).

GRANICK, S. & BEALE, S.1. Hemes, chlorophills and related compounds:

Biosynthesis. Adv. Enzymol. 46: 33-203 (1978).

GRANICK, S. & MAUZERALL, D. Porphyrin biosynthesis in erythrocytes. II. Enzymes converting delta-aminolevulinic acid to coproporphyrinogen. J. Biol. Chem. 232:1119-1140 (1958).

GUO, G.G.; GU, M. & ETLlNGER, J.D. 24--kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. The Journal of Biological Chemistry 269(17):12399-12402 (1994).

HASNIAN, S.S.; WARDELL, E.M.; GARNER, C.D.; SCHLOSSER, M. & BEYERSMANN, D. Extended-X-ray-absorption-fine-structure investigations of zinc in 5-aminolaevulinate dehydratase. Biochem. J. 230:625-633 (1985).

HERNEBERG, S.; NIKKANEN, J.; MELLlN, G.; LlLIUS, H. Delta-aminolevulinic acid dehydratase as a measure of lead exposure. Arch. Environ. Health 21 :140-145 (1970).

HODSON, P.V.; BLUNT, B.R.; SPRY, D.J.; AUSTEN, K. Evaluation of erythrocyte delta-amino levulinic acid dehydratase activity as a short-term indicator in fish of a harmful exposure to lead. J. Fish. Res. Board Cano 33:501-508 (1977).

JAFFE, E.K. Predicting the Zn(lI) ligands in metalloproteins: case study, porphobilinogen synthase. Comm. Inorg. Chem. 15:67-93 (1993).

JAFFE, E.K.; ABRAMS, W.R.; KAEMPFEN, H.X. & HARRIS, Jr. KA 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinco Biochem. 31: 2113-2123 (1992).

JAFFE, E.K.; ALI, S.; MITCHELL, L.W.; TAYLOR, K.M.; VOLlN, M. & MARKHAM, G.D. Characterization of the role of the stimulatory magnesium of Escherichia coli porphobilinogen synthase. Biochem. 34:244-251 (1995).

JAFFE, E.K. & HANES, D. Dissection of the early steps in the porphobilinogen synthase catalysed reaction - Requirement for Schiff 's base formation. J. Biol. Chem. 261 :9348-9353 (1986).

JAFFE, E.K. & MARKHAN, G.D. Carbon-13 NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein. Biochem. 26:4258-4264 (1987).

JAFFE, E.K.; MARKHAM, G.D. & RAJAGOPALAN, J.S. 15N and 13C NMR studies of ligands bound to the 280 000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate. Biochem. 29:8345-8350 (1990).

JAFFE, E.K.; SALOWE, S.P.; CHEN, N.T. & DE HAVEN, PA Porphobilinogen synthase modification with methylmethanethiosulfonate-A protocol for the investigation of metalloproteins. J. Biol. Chem. 259:5032-5036 (1984).

JAFFE, E.K.; VOLlN, M. & MYERS, C.B. 5-Chloro[1,4_13C] levulinic acid modification of mammalian and bacterial porphobilinogen synthase suggests an active site containing two Zn(II).Biochem. 33: 11554-11562 (1994).

JORDAN, P.M. & GIBBS, P.N.B. Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem. J. 227: 1015-1020 (1985).

JORDAN, P.M.; GORE, M.G. & CHAUDHRY, A.G. Subunit modification of 5-aminolevulinate dehydratase involving cysteine residues Biochem. Soc. Trans. 4:762-763 (1976).

JORDAN, P.M. & SEEHRA, J.S. Carbon-13 NMR as a probe for the study of enzyme-catalyzed reactions. Mechanism of action of 5-aminolevulinic acid dehydratase. FEBS lett. 114: 283-286 (1980).

KAPPAS, A.; SASSA, S.; GALBRAITH, R.A.; NORDMANN, Y. The Phorphyrias. In: The Metabolic Bases of Inherited Disease, eds. Scriver, C.R.; Beaudet, A.L.; Sly, W.S.; Valle, D. (McGraw Hill, New York), pp. 2103-2160 (1995).

LASCELLES, J. The regulation of heme and chlorophyll synthesis in bacteria. Ann. New York Acad. Sci. 244: 334-347 (1975).

LI, J.M.; RUSSELL, C.S.; COSLOY, S.D. & SHARON, D. The structure of the Escherichia coli hemB gene. Gene 75: 177-184 (1989).

MATTERS, G.L. & BEALE, S.I. Structure and expression of the Chlamydomonas reeinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, delta-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant. MoI. Biol. 27(3): 607-617 (1995).

MENON, IA & SHEMIN, D. Concurrent decrease of enzymic activities concerned with the synthesis of coenzyme B12 and of propionic acid in Propionibacteria Arch. Biochem. Biophys. 121: 304-310 (1967).

MEREDITH, PA; MOORE, M.R.; GOLDBERG, A Erythrocyte ALA dehydratase activity and blood protoporphyrin concentrations as indices of lead exposure and altered haem biosynthesis. Clin. Sci. MoI. Med. 56:61-69 (1979).

MITCHELL, L.W. & JAFFE, E.K. Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch. Biochem. Biophys. 300:169-177 (1993).

MITCHELL, R.A.; DRAKE, J.E.; WITTLlN, L.A.; REJENT, TA Erythrocyte porphobilinogen synthase (Delta-aminolaevulinate dehydratase) activity: a reliable and quantitative indicator of lead exposure in humans. Clin. Chem. 23:105-111 (1977).

MITCHELL, G.A.; LAMBERT, M.; TANGUAY, R.M. Hypertyrosinemia In: The Metabolic Bases of Inherited Disease, eds. Scriver, C.R.; Beaudet, AL.; Sly, W.S.; Valle, D. (McGraw Hill, New York), pp. 1077-1106 (1995).

MONTEIRO, H.P.; ABDALLA, D.S.P.; AUGUSTO, O. & BECHARA, E.J.H. Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch. Biochem. Biophys. 271(1):206-216 (1989).

MUTHUKRISHNAN, S.; MALATHI, K. & PADMANABAN, G. delta-Aminolaevulinate dehydratase, the rgulatory enzyme of the haembiosynthetic pathway in Neurospora crassa Biochem. J. 129: 31-37 (1972).

NAKAO, K.; WADA, O.; YANO, Y. Delta-aminolevulinic acid dehydratase activity in erythrocytes for the evaluation of lead poisoning. Clin. Chim. Acta 19:319-325 (1968).

NANDI, D.L. Delta-Aminolevulinic acid synthase of Rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. Z. Naturforsch. 33C:799-800 (1978).

NANDI, D.L.; BAKER-COHEN, K.F. & SHEMIN, D. Delta-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides: I. Isolation and properties. J. Biol. Chem. 243: 1224-1230 (1968).

NELSON, H.M.; UGHES, MA; MEREDITH; PA Zinc, copper and delta-aminolevulinic acid dehydratase in vitro and in vivo. Toxicology 21: 261-266 (1981).

PEREIRA, B.; CURI, R.; KOKUBUN, E. & BECHARA, J.H. 5-Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. J. Appl. Physiol. 72(1): 226-230 (1992).

PETROVICH, R.M.; LlTWIN, S. & JAFFE, E.K. Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(lI) and monovalent cations. J. Biol. Chem. 271(15): 8692-8699 (1996).

PETRUCCI, R.; LEONARDI, A.; BATTISTUZZI, G. The genetic polymorphism of human delta-aminolevulinate dehydratase in Italy. Hum. Genet. 60: 289-290 (1982).

ROCHA, J.B.T.; FREITAS, A.J.; MARQUES, M.B.; PEREIRA, M.E.; EMANUELLI, T.; SOUZA, D.O. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Brazilian 4.:. Med. Biol. Res. 26:1077-1083 (1993).

ROCHA, J.B.T.; PEREIRA, M.E.; EMANUELLI, T.; CHRISTOFARI, R.S.; SOUZA, D.O. Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on delta-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver, kidney and blood of suckling rats. Toxicology 100:27-37 (1995).

RODRIGUES, A.L.S. Delta-aminolevulinato desidratase (E.C.: 4.2.1.24) em sangue de Pimelodus Maculatus (Pisces, Pimelodidae): características bioquímicas e efeito de metais pesados. Porto Alegre, Curso de Pós-Graduação em Bioquímica, UFRGS, 1987. Dissertação de Mestrado.

RODRIGUES, A.L., BELLlNASO, M.L. & DICK, T. Effect of some metal ions on blood and liver delta-aminolevulinate dehydratase of Pimelodus maculatus (Pisces, Pimelodidae). Comp. Biochem. Physiol. 94B: 65-69 (1989).

RODRIGUES, A.L.S.; ROCHA, J.B.T.; PEREIRA, M.E. & SOUZA, D.O. Delta-aminolevulinic acid dehydratase activity in weanling and adult rats exposed to lead acetate. Buli. Environ. Contam. Toxicol. 57:47-53 (1996).

SASSA, S.; FUJITA, H. & KAPPAS, A. Genetic and chemical influences on heme biosynthesis. In: A Kotyk, J. Skoda; V. Paces and V. Kostka (Eds.), Highlights of Modem Biochemistry, VSP, Utrecht, Vol. 1, pp. 329-338 (1989).

SCHAUMBURG, A; SCHNEIDER-POETSH, A.A.W. & ECKERSKORN, C. Characterization of plastid 5-aminolevulinate dehydratase (ALA-D, EC 4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non plant ALA-D enzymes. Z. Naturforsch. 47C: 77-84 (1991 ).

SEYDOUX, F.; MALHOTRA, P.O. & BERNHARD, S.A. Half-site reactivity. Crit. Rev. Biochem. 2:227-257 (1974).

SHEMIN, D. 5-Aminolaevulinic acid dehydratase: structure, function, and mechanism. Phil. Trans. R. Soc. Lond. 273B: 109- 115 (1976).

SHIBATA, H. & OCHIAI, H. Purification and properties of delta-aminolevulinic acid dehydratase from radish cotyledons. Plant & Cell Physiol., 18: 421-429 (1977).

SPENCER, P. & JORDAN, P. M. Purification and characterization of 5-aminolaevulinic acid dehydratase from Escherichia coli and a study of the reactive thiols at the metal-binding domain. Biochem. J. 290: 279-287 (1993).

SPENCER, P. & JORDAN, P.M. Investigation of the nature of the two metal-binding sites in 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem. J. 300:373-381 (1994).

SPENCER, P. & JORDAN, P.M. Characterization of the two 5-aminolaevulinic acid binding sites, the A- and P-sites, of 5-aminolaevulinic acid dehydratase from Escherichia coli. Biochem. J. 305: 151-158 (1995).

SOMMER, R. & BEYERSMANN, D. Zinc and cadmium in 5-aminolevulinic acid dehydratase. Equilibrium, kinetic, and 113Cd-nmr-studies. J. Inorg. Biochem. 20: 131-145 (1984).

TAMAI, H.; SHIOI, Y. & SASA, T. Purification and characterization of delta-aminolevulinic acid dehydratase from Chlorella regularis. Plant & Cell Physiol. 20(2): 435-444 (1979).

TIGIER, H.A.; BATLLE, AM. del C.; LOCASCIO, G.A. Porphyrin biosynthesis in soybean callus tissue system. Isolation, purification and general properties of delta-aminolaevulinate dehydratase. Biochem. Biophys. Acta 151 :300-302 (1968).

TIGIER, H.A.; BATLLE, A.M. del C.; LOCASCIO, G.A. Porphyrin biosynthesis in the soybean callus tissue system. 11. Improved purification and some properties delta-aminolaevulinic acid dehydratase. Enzymologia 38: 43-56 (1970).

TSUKAMOTO, I.; YOSHINAGA, T.; and SANO, S. The role of zinc with special reference to the essential thiol groups in delta- aminolevulinic acid dehydratase of bovine liver. Biochim. Biophys. Acta 570: 167-178 (1979).

TSUKAMOTO, I.; YOSHINAGA, T.; SANO, S. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase. Int. J. Biochem. 12: 751-756 (1980).

VERGNANO, C.; CARTASEGNA, C. & BONSIGNORE, D. Regolazione allosterica della attivita 'delta-amino-Ievulinico-deidratasica eritrocitaria. - Nota I. BoII. Soc. Ital. Biol. Sper. 64(7): 692-695 (1968).

WETMUR, J.G. Influence of the common human delta-aminolevulinate dehydratase polymorphism on lead body burden. Environmental Health Perspectives 102, sup. 3:215-219 (1994).

WETMUR, J.G.; BISHOP, D.F.; CANTELMO, C. & DESNICK, R.J. Human delta-aminolevulinate dehydratase: Nucleotide sequence of a full-length cDNA clone. Proc. Natl. Acad. Sci. USA 83:7703-7707 (1986).

WILSON, E.L.; BURGER, P.E.; DOWDLE, E.B. Beef-liver 5- aminolevulinic acid dehydratase - Purification and properties. Eur. J. Biochem. 29: 563-571 (1972).

WU, W.; SHEMIN, D.; RICHARDS, K.E.; WILLlAMS, A.C. The quaternary structure of delta-aminolevulinic acid dehydratase from bovine liver. Proc. Natl. Acad. Sci. U.S.A. 71: 1767-1770 (1974).

YUBISUI, T. & YONEYAMA, Y. Delta-Aminolevulinic acid synthetase of Rhodopseudomonas spheroides: purification and properties of the enzyme. Arch. Biochem. Biophys. 150: 77-85 (1972).

Downloads

Publicado

1997-12-10

Como Citar

Emanuelli, T. (1997). A enzima delta-aminolevullnato desidratase. Ciência E Natura, 19(19), 201–224. https://doi.org/10.5902/2179460X34316