The Beta-Weibull Distribution on the Lattice of Integers

Autores

  • Vahid Nekoukhou Department of Statistics, Khansar Faculty of Mathematics and Computer Science, Khansar, Iran
  • Hamid Bidram Department of Statistics, University of Isfahan, Isfahan, Iran
  • Rasool Roozegar Department of Statistics, Yazd University, Yazd, Iran

DOI:

https://doi.org/10.5902/2179460X21864

Palavras-chave:

Beta-Weibull distribution, Discrete beta generalized exponential distribution

Resumo

In this paper, a discrete analog of the beta-Weibull distribution is studied. This new distribution contains several discrete distributions as special sub-models. Some distributional and moment properties of the discrete beta-Weibull distribution as well as its order statistics are discussed. We will show that the hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Estimation of the parameters is illustrated and the model with a real data set is also examined.

Downloads

Não há dados estatísticos.

Referências

BARRETO-SOUZA, W., SANTOS, A. H., CORDEIRO, G.M. (2010). The beta generalized exponential distribution. J. Stat. Comput. Simul.. 80(2): 159-172.

BIDRAM, H., BEHBOODIAN, J., TOWHIDI, M. (2013). The beta Weibull-geometric Distribution. J. Stat. Comput. Simul., 83(1): 52-67.

CASTELLARES, F., MONTENEGRO, L.C., CORDEIRO, G.M. (2013). The beta log-normal distribution. J. Stat. Comput. Simul., 83(2): 203-228.

CHAKRABORTY, S., CHAKRAVARTY, D. (2012). Discrete Gamma distributions: properties and parameter estimation. Comm. Stat.Theo. Meth., 41(18): 3301-3324.

CHAKRABORTY, S., CHAKRAVARTY, D. (2014). A Discrete Gumbel Distribution. arXiv: 1410.7568.

CORDEIRO, G.M., GOMES, A.E., SILVA, C.Q., ORTEGA, E.M.M. (2013a). The beta exponentiated Weibull distribution. J. Stat. Comput. Simul., 83(1): 114-138.

CORDEIRO, G.M., CRISTINO, C.T., HASHIMOTO, E.M., ORTEGA, E.M.M. (2013b). The beta generalized Rayleigh distribution with applications to lifetime data. Stat. Papers, 54: 133-161.

CORDEIRO, G.M., SILVA, G.O., ORTEGA, E.M.M. (2013c). The beta-Weibull geometric distribution, Statistics, 47: 817-834.

CORDEIRO, G.M., SIMAS, A.B., STOˇSI´C, B.D. (2011). Closed form expressions for moments of the beta Weibull distribution. Anais da Academia Brasileira de Ciˆencias, 83(2): 357-373.

CORDEIRO, G.M., LEMONTE, A.J. (2011a). The beta Laplace distribution. Stat. & Prob. Lett., 81: 973-982.

CORDEIRO, G.M., LEMONTE, A.J. (2011b). The beta-half-Cauchy distribution. J. Prob. Stat., 2011:1-18.

EUGENE, N., LEE, C. FAMOYE, F. (2002). Beta-normal distribution and its applications. Comm. Stat. Theo. Meth., 31: 497-512.

FERGUSON, T.S. (1996). A course in large sample theory. Chapman and Hall, London.

G´OMEZ-D´ENIZ E. (2010). Another generalization of the geometric distribution, Test, 19: 399-415.

G´OMEZ-D´ENIZ E., CALDERIN-OJEDA, E. (2011). The discrete Lindley distribution: properties and applications. J. Stat. Comput. Simul., 81(11): 1405-1416.

GUPTA, R.D., KUNDU, D. (1999). Generalized exponential distributions. Aust. NZ. J. Stat., 41(2): 173-188.

HUSSAIN, T., AHMAD, M. (2014). Discrete Inverse Rayleigh Distribution. Pak. J. Statist., 30(2): 203-222.

INUSAH, S., KOZUBOWSKI, T.J. (2006). A discrete analogue of the Laplace distribution. Statist. Plann.Infe., 136: 1090-1102.18

KEMP, A.W. (1992). HeineEuler extensions of the Poisson distribution. Commun. Stat. TheoryMethods,21(3): 571-588.

KEMP, A.W. (1997). Characterizations of discrete normal distribution. Statist. Plann. Inf., 63: 223-229.

KOTZ, S. LUMELSKII Y., PENSKY, M. (2003). The stress-strength model and its generalizations: Theory and Applications. Singapore: World Scientific 43, 44.

KOZUBOWSKI, T.J., INUSAH, S. (2006). A skew Laplace distribution on integers. AISM, 58: 555-571.

KRISHNA, H., PUNDIR, P.S. (2007). Discrete maxwell distribution. InterStat, November.

KRISHNA, H., PUNDIR, P.S. (2009). Discrete Burr and discrete Pareto distributions. Statist. Methodol., 6: 177-188.

LEE, H., CHA, J.H. (2015). On Two General Classes of Discrete Bivariate Distributions. The American Statistician, DOI: 10.1080/00031305.2015.1044564.

LEMONTE, A.J., CORDEIRO, G.M. (2013). An extended Lomax distribution. Statistics, 47(4): 800-816. bibitem Lisman, J.H.C., van Zuylen, M.C.A. (1972). Note on the generation of most probable frequency distributions. Statistica. Neerlan., 26(1): 19-23.

MAHMOUDI, E. (2011). The beta generalized Pareto distribution with application to lifetime data.Math. Comput. Simul., 81: 2414-2430.

MORAIS, A.L., Cordeiro, G.M., Audrey, H.M.A. (2013). The beta generalized logistic distribution. Brazilian J. Prob. Stat., 27: 185-200.

MUDHOLKAR, G.S, SRIVASTAVA, D.K., FREIMER, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37: 436-445.

NADARAJAH, S., KOTZ, S. (2006). The beta exponential distribution. Reli. Engin. Sys. Saf., 91: 689-697.

NAKAGAWA, T., OSAKI, S. (1975). The discrete Weibull distribution. IEEE Transact. Reliab., 24(5): 300-301.

NEKOUKHOU, V., ALAMATSAZ, M.H., BIDRAM, H. (2013). Discrete generalized exponential distribution of a second type.

Statistics, 47(4): 876-887.

NEKOUKHOU, V., ALAMATSAZ, M.H. BIDRAM, H. AGHAJANI, A.H. (2015). Discerte beta exponential distribution. Commun. Stat. Theory-Methods, 44: 2079-2091.

NEKOUKHOU, V., BIDRAM, H. (2015a). A new four-parameter discrete distribution with bathtub and unimodal failur rate. J. Applied Statistics, 42(12): 2654-2670.

NEKOUKHOU, V., BIDRAM, H. (2015b). The exponentiated discrete Weibull distribution. SORT, 39(1): 127-146.

NEKOUKHOU, V. (2015). The Beta-Rayleigh Distribution on the Lattice of Integers. J. Statistical research of Iran, 12: 205224.

RAUE, A., KREUTZ, C., MAIWALD, T., BACHMANN, J., SCHILLING, M., KLINGMLLER, U., TIMMER, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923-1929.

ROY, D. (2003). The discrete normal distribution. Comm. Stat.Theo. Meth., 32(10): 1871-1883.

ROY, D. (2004). Discrete Rayleigh distribution,. IEEE Trans. Reliab, 53: 255-260.

SILVA, G.O., ORTEGA, E.M.M., CORDEIRO, G.M. (2010). The beta modified Weibull distribution. Life. data Anal., 16: 409-430.

SINGLA, N., JAIN, K., SHARMA, S.K. (2012). The beta generalized Weibull distribution: Properties and applications. Reli. Engin. Sys. Saf., 102: 5-15.

STEUTEL, F.W., VAN HARN, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. New York: Marcel Dekker.

Downloads

Publicado

2016-12-29

Como Citar

Nekoukhou, V., Bidram, H., & Roozegar, R. (2016). The Beta-Weibull Distribution on the Lattice of Integers. Ciência E Natura, 39(1), 40–58. https://doi.org/10.5902/2179460X21864

Edição

Seção

Estatística

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.