Model for utilizing Associated Natural Gas with hydrogen in Pre-Salt offshore explorations

Authors

DOI:

https://doi.org/10.5902/2179460X91479

Keywords:

Associated Natural Gas, Greenhouse gas, Floating Production Storage Offloading

Abstract

In the race towards energy transformation, countless efforts are being made to improve efficiency and mitigate greenhouse gas emissions. In oil exploration and production (E&P), Natural Gas (NG) is a primary product exploited alongside crude oil due to its excellent energy potential. Under primitive conditions, NG can be classified as either Associated NG or Non-Associated NG. Non-Associated NG is produced from reservoirs containing almost exclusively dry gas, free of crude oil and water. Associated NG, on the other hand, is NG that is dissolved in oil or in contact with saturated crude oil. In Brazil, the NG produced from offshore reservoirs is predominantly Associated NG and, in addition to being exported, is used locally in power generation, artificial lifting and injected into reservoirs. This method is widely used in E&P to increase the recovery factor of reservoirs. The use of Associated NG is provided for in Resolution No. 806 of 2020 of the ANP (Agência Nacional do Petróleo, Gás Natural e Biocombustíveis), which regulates the procedures for controlling NG losses and flaring. In E&P, since flaring is inevitable, it is proposed, with the NG currently used for flaring, to increase the utilization rate of Associated NG for hydrogen production through a modular structure suitably sized to fit the competitive space of a Floating Production Storage Offloading (FPSO) unit.

Downloads

Download data is not yet available.

Author Biographies

Antonio Carlos Dutra de Sousa, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

Master's Degree in Renewable Energy and Energy Efficiency from the Polytechnic Institute of Bragança.

Luís Frölén Ribeiro, Instituto Politécnico de Bragança

PhD in Mechanical Engineering from the Faculty of Engineering of the University of Porto.

Thiago Americano do Brasil, Federal Center for Technological Education Celso Suckow da Fonseca

PhD in Electrical Engineering from the Federal University of Rio de Janeiro.

References

Aliyu A. (2022). Low Carbon Hydrogen from Natural Gas: Global Roadmap. New IEAGHG Technical Report: 2022-07. URL: https:/ www.ieaghg.org/ccs-resources/blog/new-ieaghg -technical-report-2022-07-low-carbon-hydrogen-from-natural-gas-global-roadmap. Accessed on: Jul/2024.

Alves, A. (2024) Estatística Aplicada: Análise de Dados. Brasil: Aprender Estatística Fácil.

ANP (2024). Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. URL: https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-estatisticos. Accessed on: fev/2024.

Castanheira, N. P. (2023). Estatística aplicada a todos os níveis. Editora Intersaberes.

Estudo sobre o Aproveitamento do Gás Natural do Pré-Sal (2020). URL: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/estudosobre-o-aproveitamento-do-gas-natural-do-pre-sal-. Accessed on: Jul/2024.

Franchi, G., Capocelli, M., De Falco, M., Piemonte, V., & Barba D. (2020). Hydrogen production via steam reforming: A critical analysis of MR and RMM technologies. Membranes. URL: https://doi.org/10.3390/membranes10010010. Accessed on: Jul/2024.

Guimarães, R. C., & Cabral J. S. (2010). Estatística, 2ª Edição.

Massarweh, O., Al-khuzaei, M., Al-Shafi, M., Bicer, Y., & Abushaikha A. S. (2023). Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. Journal of CO2 Utilization. URL: https://doi.org/10.1016/j.jcou.2023.102438. Accessed on: Jul/2024.

Oni, A. , Anya, K., Giwa, T., Di Lullo,G., & Kumar, A. (2022). Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management. URL: https://doi.org/10.1016/j.enconman. 2022.115245. Accessed on: Jul/2024.

Pereira, M. A. T. & Pereira, P. J. (2018). Estatística Aplicada à Engenharia. URL: https://docplayer.com.br/87574246-Estatistica-aplicaenharia-monicaaparecida-tome-pereira-paulo-jose-pereira.html. Accessed on: Jul/2024.

Rapier R. (2020). Estimating the Carbon Footsprint of Hydrogen Production. URL: https:www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbonfootprint-of-hydrogen- production/. Accessed on: Jul/2024.

Spath, P. L., & Mann, M. K. (2000). Life cycle assessment of a natural gas combined cycle power generation system. National Renewable Energy Lab.(NREL), Golden, CO (United States), rel. téc.URL: https://www.osti.gov/biblio/776930. Accessed on: Jul/2024.

Sun P., & Elgowainy, A. (2019). Updates of Hydrogen Production from SMR Process in GREET. Technical report, rel. téc. URL: https://greet.anl.gov/files/sme_h2_2019. Accessed on: Jul/2024.

Soltani, R., Rosen, M., & Dincer I. (2014). Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International journal of hydrogen energy, vol. 39, n.º 35, pp. 20 266–20 275. URL: https://doi. org/10.1016/j.ijhydene.2014.09.161. Accessed on: Jul/2024.

Downloads

Published

2025-05-21

How to Cite

Sousa, A. C. D. de, Ribeiro, L. F., & Brasil, T. A. do. (2025). Model for utilizing Associated Natural Gas with hydrogen in Pre-Salt offshore explorations. Ciência E Natura, 47(esp. 2), e91479. https://doi.org/10.5902/2179460X91479