Optimization of electrolytic process for the removal of the antibiotic ciprofloxacin from synthetic wastewater

Authors

DOI:

https://doi.org/10.5902/2179460X91409

Keywords:

Antibiotics, Emerging contaminants, Electrolytic treatment

Abstract

Ciprofloxacin (CIP), an antibiotic of the fluoroquinolone class, has low biodegradability and possible toxic environmental effects. Due to its extensive use, it is considered an emerging contaminant (EC) in environmental compartments such as water, sludge, and sewage that contribute to antimicrobial resistance. This work assessed the optimal conditions for removing CIP in synthetic wastewater using electrolytic treatment and a laboratory-scale reactor with aluminum electrodes. The experiments were carried out from reconstituted synthetic wastewater fortified with 10 mg L-1 of CIP. The operational parameters of the reactor, such as pH, voltage, and concentration of the supporting electrolyte (NaCl), were optimized based on the reduction of the CIP concentration through the complete factorial design 2³ followed by optimization by the response surface methodology employing central composite rotational design (CCRD) from the regression analysis of the quadratic model. The best operational condition obtained was pH = 7.6, voltage = 5.6 V, and [NaCl] = 0.6 g L-1. In the validation tests, the removal achieved over 120 min was 78%, with equilibrium established after 80 min. It is suggested that, in addition to removing CIP by electrocoagulation mechanisms, there is also degradation by the electro-oxidation mechanism, promoted by oxidizing species produced from components of the reaction medium. The applied electrolytic process proved favorable and promising for removing CIP in synthetic wastewater.

Downloads

Download data is not yet available.

Author Biographies

Ismael Laurindo Costa Junior, Universidade Tecnológica Federal do Paraná

PhD in Chemistry.

Cesar Augusto Kappes, Universidade Tecnológica Federal do Paraná

Graduated in Chemistry.

Bruna Giovana Locatelli, Universidade Tecnológica Federal do Paraná

Master in Environmental Technologies.

Renata Mello Giona, Universidade Tecnológica Federal do Paraná

PhD in Chemistry.

References

Adeoye, A. B., Tan, Y. H., Lau, S. Y., Tan, Y. Y., Chiong, T., Mubarak, N. M. & Khalid, M. (2024). Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. Journal of Environmental Management, 353, 120170. doi: https://doi.org/10.1016/j.jenvman.2024.120170.

Ahmadzadeh, S. Asadipou, A., Pournamdari, M., Behnam, B., Rahimi, H. R. & Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538–547. doi: https://doi.org/10.1016/j.psep.2017.04.026.

Baptistucci, C. B. (2012). Degradação do antibiótico ciprofloxacina em solução aquosa por meio de processos oxidativos avançado baseado em ozônio. [Dissertação de Mestrado em. Engenharia Química]. Univerdiade de São Paulo. Biblioteca Digital de Teses e Dissertações da USP. doi: https://doi.org/10.11606/D.3.2012.tde-03052012-122334.

Baran, W., Adamek, E., Jajko, M. & Sobczak, A. (2018). Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere, 194, 381-389. Doi:10.1016/j.chemosphere.2017.11.165.

Barışçı, S. & Turkay, O. (2016). Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation, Water Science & Technology, 3(7), 1673–1679. doi: https://doi.org/10.2166/wst.2015.649.

Barros Neto, B., Scarminio, I. S. & Bruns, R. E. (2001). Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria. Campinas, SP: Editora Unicamp.

Branco, N. M. C., Pereira , M. U., Ferreira, R. G., Spisso, B. F. ., Albert, A. L. M. & Romão, C. M. C. P. A. (2021). Occurrence of antimicrobials in surface and wastewater in the Municipality of Rio de Janeiro: an environmental and public health vulnerability issue. Research, Society and Development, 10 (10), e415101019000. doi: https://doi.org/10.33448/rsd-v10i10.19000.

Castiglioni, S., Bacagnati, R., Fanalli, R., Pomati, F., Calamari, D. & Zuccato, E. (2006). Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environmental Science Technology, 40(1), 357–363. doi: https://doi.org/10.1021/es050991m.

Costa Junior, I. L., Machado, C. S., Pletsch, A. L. & Torres, Y. R. (2022). Sorption and desorption behavior of residual antidepressants and caffeine in freshwater sediment and sewage sludge. International Journal of Sediment Research, 37(3), 346-354. doi: https://doi.org/10.1016/j.ijsrc.2021.10.004.

Espinoza-Quiñones, F. R.; de Souza, A. R. C., Módenes, A. N., Trigueros, D. E. G., de Pauli, A. R., de Souza, P. S. C., & Kroumov, A. D. (2016). Removal Performance, Antibacterial Effects, and Toxicity Assessment of Ciprofloxacin Treated by the Electrocoagulation Process. Water, Air, & Soil Pollution, 227(12), 460. doi: https://doi.org/10.1007/s11270-016-3165-8.

Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A. & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical Chemistry, 73(15), 3632–3638. doi: https://doi.org/10.1021/ac0015265.

Gracia-Lor, E., Sancho, J. V. & Hernandéz, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1218(16), 2264-2275. doi: https://doi.org/10.1016/j.chroma.2011.02.026.

Joao, J. J., Emerick, T., Filho, U. S. & Nishihora, R. K. (2018). Processo de eletrocoagulação-flotação: investigação dos parâmetros operacionais para o tratamento de águas residuais da indústria de pescados. Quimica Nova, 10(2) 163-168. doi: https://doi.org/10.21577/0100-4042.20170166.

Kairigo, P., Ngumba, E., Sundberg, L.-R., Gachanja, A. & Tyhkanen, T. (2020). Contamination of Surface Water and River Sediments by Antibiotic and Antiretroviral Drug Cocktails in Low and Middle-Income Countries: Occurrence, Risk and Mitigation Strategies. Water, 12(5), 1376-1386. doi: https://doi.org/10.3390/w12051376.

Kolpin, D. W., Furlon, E. T., Meuer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B. & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environmental Science and Technology, 36(6),1202–1211. doi: https://doi.org/10.1021/es011055j.

Lee, S., Kim, C., Liu, X., Lee, S., Kho, Y., Kim, W. K., Kim, P. & Choi K. (2021). Ecological Risk Assessment of Amoxicillin, Enrofloxacin, and Neomycin: Are Their Current Levels in the Freshwater Environment Safe?. Toxics, 9(8), 196. doi: https://doi.org/10.3390/toxics9080196.

Li, L., Zhao, X., Liu, D., Song, K., Liu, Q. & He, Y. (2021). Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China. Journal of Environmental Management, 285,112176. doi: https://doi.org/10.1016/j.jenvman.2021.112176

Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M. & Andersson, B. A. V. (2006). Behaviour of fluoroquinolones and trimethoprim during mechanical, chemical and active sludge treatment of sewage water and digestion of sludge. Environmental Science and Technology, 40(3), 1042-1048. doi: https://doi.org/10.1021/es0516211.

Locatelli, M. A. F., Sodré, F. F. & Jardim, W. F. (2011). Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry. Archives of Environmental Contamination and Toxicology, 60, 385–393. doi: https://doi.org/10.1007/s00244-010-9550-1.

Marchesi, M. D. T. (2020). Remoção de matéria orgânica, nutrientes e antibióticos em esgotos domésticos por wetlands construídas de fluxo vertical. [Dissertação de Mestrado em Tecnologias Ambientais]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/5396.

Melo, S. A. S., Trovó, A. G., Beautitz, I. R. & Nogueira, R. F. P. (2009). Degradação de fármacos residuais por processos oxidativos avançados. Quimica Nova, 32(1), 188–197. doi: https://doi.org/10.1590/S0100-40422009000100034.

Módenes, A. N., Espinosza-Quiñones, F. R., Yassue, P. H., Porto, T. M. & Theodoro, P. S. (2017). Aplicação da técnica de eletrocoagulação no tratamento de efluentes de abatedouro de aves. Engenharia Sanitaria e Ambiental, 22(3), 571–578. doi: https://doi.org/10.1590/S1413-4152201775999.

Mohammed, S. J., M-Ridha, M. J., Abed, K. M. & Elgharbawy, A. A. M. (2021). Removal of levofloxacin and ciprofloxacin from aqueous solutions and an economic evaluation using the electrocoagulation process‏. International Journal of Environmental Analytical Chemistry, 103(16), 3801–3819. Doi: https://doi.org/10.1080/03067319.2021.1913733.

Montagner, C. C., Vidal, C. & Acayaba, R. D. (2017). Contaminantes emergentes em matrizes aquáticas do Brasil: Cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quimica Nova, 40(9), 1094–1110. doi: https://doi.org/10.21577/0100-4042.20170091.

Mostafaloo, R., Yari, A. R., Mohammadi, M. J., Khaniabadi, Y. O. & Asadi-Ghalhari, M. (2019). Optimization of the electrocoagulation process on the effectiveness of removal of cefixime antibiotic from aqueous solutions. Desalination and Water Treatment, 144, 138–144. doi: https://doi.org/10.5004/dwt.2019.23530.

Negarestani, M., Motamedi, M., Kashtiaray, A., Khadir, A. & Sillampaa, M. (2020) Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics. Groundwater for Sustainable Development, 11, 100474. doi: https://doi.org/10.1016/j.gsd.2020.100474.

Oldenkamp, R., Beusen, A. H. W. & Huijbregts, M. A. J. (2019). Aquatic risks from human pharmaceuticals—modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environmental Research Letters, 14(3), 034003. doi: https://doi.org/10.1088/1748-9326/ab0071.

Parsa, J. B., Panah, T. M. & Chianeh, C. N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean Journal of Chemical Engineering, 33, 893–901. doi: https://doi.org/10.1007/s11814-015-0196-6.

Pinto, E. A. (2011). Impacte ambiental dos medicamentos. [Dissertação de Mestrado Integrado em Ciências Farmacêuticas]. Universidade Fernando Pessoa. Repositório Institucional da Universidade Fernando Pessoa. http://hdl.handle.net/10284/2452.

Rodrigues-Silva, C., Maniero, M. G., Peres, M. S. & Guimarães, J. R. (2014). Ocorrência e degradação de quinolonas por processos oxidativos avançados. Quimica Nova, 37(5), 868–885. doi: https://doi.org/10.5935/0100-4042.20140139.

Santana, M. M. (2018). Avaliação da eletrocoagulação como pré-tratamento de efluente de uma indústria de panificação. [Dissertação de mestrado em Engenharia Civil]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/3155.

Santos, R. B. S. (2021). Remoção do fármaco sulfametoxazol por eletrooxidação. [Trabalho de Conclusão de Curso de Bacharelado em Engenharia Ambiental]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/27773.

Schmitt-Kopplin, P., Burhenne, J., Freitag, D., Spiteller, M. & Kettrup, A. (1999). Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase. Journal of Chromatography A, 837(1-2), 253-265. doi: 10.1016/S0021-9673(99)00079-5.

Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V. & Baum Ann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225(1–2), 135–141. doi: https://doi.org/10.1016/S0048-9697(98)00339-8.

Taoufik, N., Boumya, W., Achak, M., Sillanpää, M., Barka, N. (2021). Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. Journal of Environmental Management, 288, 112404. doi: https://doi.org/10.1016/j.jenvman.2021.112404.

Ticianelli, E. A. & Gonzalez, E. R. (2005). Eletroquímica. São Paulo, SP: Editora da Universidade de São Paulo.

Yoosefian, M., Ahmadzadeh, S., Aghasi, M. & Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode: kinetic and isotherm studies of adsorption. Journal of Molecular Liquids, 225, 544–553. doi: https://doi.org/10.1016/j.molliq.2016.11.093.

Zhang, X. X., Dong, L. L., Cai, K. & Li, R. P. (2013). A routine method for simultaneous determination of three classes of antibiotics in aquaculture water by SPE-RPLC-UV. Advanced Materials Research, 726–731, 1253–1259. doi: https://doi.org/10.4028/www.scientific.net/amr.726-731.1253.

Downloads

Published

2025-05-21

How to Cite

Costa Junior, I. L., Kappes, C. A., Locatelli, B. G., & Giona, R. M. (2025). Optimization of electrolytic process for the removal of the antibiotic ciprofloxacin from synthetic wastewater. Ciência E Natura, 47(esp. 2), e91409. https://doi.org/10.5902/2179460X91409