Optimization of electrolytic process for the removal of the antibiotic ciprofloxacin from synthetic wastewater
DOI:
https://doi.org/10.5902/2179460X91409Keywords:
Antibiotics, Emerging contaminants, Electrolytic treatmentAbstract
Ciprofloxacin (CIP), an antibiotic of the fluoroquinolone class, has low biodegradability and possible toxic environmental effects. Due to its extensive use, it is considered an emerging contaminant (EC) in environmental compartments such as water, sludge, and sewage that contribute to antimicrobial resistance. This work assessed the optimal conditions for removing CIP in synthetic wastewater using electrolytic treatment and a laboratory-scale reactor with aluminum electrodes. The experiments were carried out from reconstituted synthetic wastewater fortified with 10 mg L-1 of CIP. The operational parameters of the reactor, such as pH, voltage, and concentration of the supporting electrolyte (NaCl), were optimized based on the reduction of the CIP concentration through the complete factorial design 2³ followed by optimization by the response surface methodology employing central composite rotational design (CCRD) from the regression analysis of the quadratic model. The best operational condition obtained was pH = 7.6, voltage = 5.6 V, and [NaCl] = 0.6 g L-1. In the validation tests, the removal achieved over 120 min was 78%, with equilibrium established after 80 min. It is suggested that, in addition to removing CIP by electrocoagulation mechanisms, there is also degradation by the electro-oxidation mechanism, promoted by oxidizing species produced from components of the reaction medium. The applied electrolytic process proved favorable and promising for removing CIP in synthetic wastewater.
Downloads
References
Adeoye, A. B., Tan, Y. H., Lau, S. Y., Tan, Y. Y., Chiong, T., Mubarak, N. M. & Khalid, M. (2024). Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. Journal of Environmental Management, 353, 120170. doi: https://doi.org/10.1016/j.jenvman.2024.120170.
Ahmadzadeh, S. Asadipou, A., Pournamdari, M., Behnam, B., Rahimi, H. R. & Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538–547. doi: https://doi.org/10.1016/j.psep.2017.04.026.
Baptistucci, C. B. (2012). Degradação do antibiótico ciprofloxacina em solução aquosa por meio de processos oxidativos avançado baseado em ozônio. [Dissertação de Mestrado em. Engenharia Química]. Univerdiade de São Paulo. Biblioteca Digital de Teses e Dissertações da USP. doi: https://doi.org/10.11606/D.3.2012.tde-03052012-122334.
Baran, W., Adamek, E., Jajko, M. & Sobczak, A. (2018). Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere, 194, 381-389. Doi:10.1016/j.chemosphere.2017.11.165.
Barışçı, S. & Turkay, O. (2016). Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation, Water Science & Technology, 3(7), 1673–1679. doi: https://doi.org/10.2166/wst.2015.649.
Barros Neto, B., Scarminio, I. S. & Bruns, R. E. (2001). Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria. Campinas, SP: Editora Unicamp.
Branco, N. M. C., Pereira , M. U., Ferreira, R. G., Spisso, B. F. ., Albert, A. L. M. & Romão, C. M. C. P. A. (2021). Occurrence of antimicrobials in surface and wastewater in the Municipality of Rio de Janeiro: an environmental and public health vulnerability issue. Research, Society and Development, 10 (10), e415101019000. doi: https://doi.org/10.33448/rsd-v10i10.19000.
Castiglioni, S., Bacagnati, R., Fanalli, R., Pomati, F., Calamari, D. & Zuccato, E. (2006). Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environmental Science Technology, 40(1), 357–363. doi: https://doi.org/10.1021/es050991m.
Costa Junior, I. L., Machado, C. S., Pletsch, A. L. & Torres, Y. R. (2022). Sorption and desorption behavior of residual antidepressants and caffeine in freshwater sediment and sewage sludge. International Journal of Sediment Research, 37(3), 346-354. doi: https://doi.org/10.1016/j.ijsrc.2021.10.004.
Espinoza-Quiñones, F. R.; de Souza, A. R. C., Módenes, A. N., Trigueros, D. E. G., de Pauli, A. R., de Souza, P. S. C., & Kroumov, A. D. (2016). Removal Performance, Antibacterial Effects, and Toxicity Assessment of Ciprofloxacin Treated by the Electrocoagulation Process. Water, Air, & Soil Pollution, 227(12), 460. doi: https://doi.org/10.1007/s11270-016-3165-8.
Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A. & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical Chemistry, 73(15), 3632–3638. doi: https://doi.org/10.1021/ac0015265.
Gracia-Lor, E., Sancho, J. V. & Hernandéz, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1218(16), 2264-2275. doi: https://doi.org/10.1016/j.chroma.2011.02.026.
Joao, J. J., Emerick, T., Filho, U. S. & Nishihora, R. K. (2018). Processo de eletrocoagulação-flotação: investigação dos parâmetros operacionais para o tratamento de águas residuais da indústria de pescados. Quimica Nova, 10(2) 163-168. doi: https://doi.org/10.21577/0100-4042.20170166.
Kairigo, P., Ngumba, E., Sundberg, L.-R., Gachanja, A. & Tyhkanen, T. (2020). Contamination of Surface Water and River Sediments by Antibiotic and Antiretroviral Drug Cocktails in Low and Middle-Income Countries: Occurrence, Risk and Mitigation Strategies. Water, 12(5), 1376-1386. doi: https://doi.org/10.3390/w12051376.
Kolpin, D. W., Furlon, E. T., Meuer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B. & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environmental Science and Technology, 36(6),1202–1211. doi: https://doi.org/10.1021/es011055j.
Lee, S., Kim, C., Liu, X., Lee, S., Kho, Y., Kim, W. K., Kim, P. & Choi K. (2021). Ecological Risk Assessment of Amoxicillin, Enrofloxacin, and Neomycin: Are Their Current Levels in the Freshwater Environment Safe?. Toxics, 9(8), 196. doi: https://doi.org/10.3390/toxics9080196.
Li, L., Zhao, X., Liu, D., Song, K., Liu, Q. & He, Y. (2021). Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China. Journal of Environmental Management, 285,112176. doi: https://doi.org/10.1016/j.jenvman.2021.112176
Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M. & Andersson, B. A. V. (2006). Behaviour of fluoroquinolones and trimethoprim during mechanical, chemical and active sludge treatment of sewage water and digestion of sludge. Environmental Science and Technology, 40(3), 1042-1048. doi: https://doi.org/10.1021/es0516211.
Locatelli, M. A. F., Sodré, F. F. & Jardim, W. F. (2011). Determination of antibiotics in Brazilian surface waters using liquid chromatography-electrospray tandem mass spectrometry. Archives of Environmental Contamination and Toxicology, 60, 385–393. doi: https://doi.org/10.1007/s00244-010-9550-1.
Marchesi, M. D. T. (2020). Remoção de matéria orgânica, nutrientes e antibióticos em esgotos domésticos por wetlands construídas de fluxo vertical. [Dissertação de Mestrado em Tecnologias Ambientais]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/5396.
Melo, S. A. S., Trovó, A. G., Beautitz, I. R. & Nogueira, R. F. P. (2009). Degradação de fármacos residuais por processos oxidativos avançados. Quimica Nova, 32(1), 188–197. doi: https://doi.org/10.1590/S0100-40422009000100034.
Módenes, A. N., Espinosza-Quiñones, F. R., Yassue, P. H., Porto, T. M. & Theodoro, P. S. (2017). Aplicação da técnica de eletrocoagulação no tratamento de efluentes de abatedouro de aves. Engenharia Sanitaria e Ambiental, 22(3), 571–578. doi: https://doi.org/10.1590/S1413-4152201775999.
Mohammed, S. J., M-Ridha, M. J., Abed, K. M. & Elgharbawy, A. A. M. (2021). Removal of levofloxacin and ciprofloxacin from aqueous solutions and an economic evaluation using the electrocoagulation process. International Journal of Environmental Analytical Chemistry, 103(16), 3801–3819. Doi: https://doi.org/10.1080/03067319.2021.1913733.
Montagner, C. C., Vidal, C. & Acayaba, R. D. (2017). Contaminantes emergentes em matrizes aquáticas do Brasil: Cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quimica Nova, 40(9), 1094–1110. doi: https://doi.org/10.21577/0100-4042.20170091.
Mostafaloo, R., Yari, A. R., Mohammadi, M. J., Khaniabadi, Y. O. & Asadi-Ghalhari, M. (2019). Optimization of the electrocoagulation process on the effectiveness of removal of cefixime antibiotic from aqueous solutions. Desalination and Water Treatment, 144, 138–144. doi: https://doi.org/10.5004/dwt.2019.23530.
Negarestani, M., Motamedi, M., Kashtiaray, A., Khadir, A. & Sillampaa, M. (2020) Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics. Groundwater for Sustainable Development, 11, 100474. doi: https://doi.org/10.1016/j.gsd.2020.100474.
Oldenkamp, R., Beusen, A. H. W. & Huijbregts, M. A. J. (2019). Aquatic risks from human pharmaceuticals—modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environmental Research Letters, 14(3), 034003. doi: https://doi.org/10.1088/1748-9326/ab0071.
Parsa, J. B., Panah, T. M. & Chianeh, C. N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean Journal of Chemical Engineering, 33, 893–901. doi: https://doi.org/10.1007/s11814-015-0196-6.
Pinto, E. A. (2011). Impacte ambiental dos medicamentos. [Dissertação de Mestrado Integrado em Ciências Farmacêuticas]. Universidade Fernando Pessoa. Repositório Institucional da Universidade Fernando Pessoa. http://hdl.handle.net/10284/2452.
Rodrigues-Silva, C., Maniero, M. G., Peres, M. S. & Guimarães, J. R. (2014). Ocorrência e degradação de quinolonas por processos oxidativos avançados. Quimica Nova, 37(5), 868–885. doi: https://doi.org/10.5935/0100-4042.20140139.
Santana, M. M. (2018). Avaliação da eletrocoagulação como pré-tratamento de efluente de uma indústria de panificação. [Dissertação de mestrado em Engenharia Civil]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/3155.
Santos, R. B. S. (2021). Remoção do fármaco sulfametoxazol por eletrooxidação. [Trabalho de Conclusão de Curso de Bacharelado em Engenharia Ambiental]. Universidade Tecnológica Federal do Paraná. Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT). http://repositorio.utfpr.edu.br/jspui/handle/1/27773.
Schmitt-Kopplin, P., Burhenne, J., Freitag, D., Spiteller, M. & Kettrup, A. (1999). Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase. Journal of Chromatography A, 837(1-2), 253-265. doi: 10.1016/S0021-9673(99)00079-5.
Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V. & Baum Ann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225(1–2), 135–141. doi: https://doi.org/10.1016/S0048-9697(98)00339-8.
Taoufik, N., Boumya, W., Achak, M., Sillanpää, M., Barka, N. (2021). Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. Journal of Environmental Management, 288, 112404. doi: https://doi.org/10.1016/j.jenvman.2021.112404.
Ticianelli, E. A. & Gonzalez, E. R. (2005). Eletroquímica. São Paulo, SP: Editora da Universidade de São Paulo.
Yoosefian, M., Ahmadzadeh, S., Aghasi, M. & Dolatabadi, M. (2017). Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode: kinetic and isotherm studies of adsorption. Journal of Molecular Liquids, 225, 544–553. doi: https://doi.org/10.1016/j.molliq.2016.11.093.
Zhang, X. X., Dong, L. L., Cai, K. & Li, R. P. (2013). A routine method for simultaneous determination of three classes of antibiotics in aquaculture water by SPE-RPLC-UV. Advanced Materials Research, 726–731, 1253–1259. doi: https://doi.org/10.4028/www.scientific.net/amr.726-731.1253.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.


