Computer vision-based wood identification: an approach with LPQ and GLCM descriptors integrated with Ensemble classification

Authors

DOI:

https://doi.org/10.5902/2179460X86097

Keywords:

Botanical identification, Texture descriptors, Pattern recognition, Computer vision, Ensemble classification

Abstract

Given the recognized relevance of botanical identification for forest management and biodiversity conservation, this paper proposes the identification of plant species wood anatomy using computer vision techniques. Microscopic images of 30 species were sourced from the Forest Species Database and captured using an Olympus CX40 microscope at 100x magnification, ensuring high detail. Pre-processing techniques, including normalization and feature extraction, were applied to enhance texture and color characteristics. Statistical, structural, and spectral descriptors such as LBPHF 24,3 and the combination of LPQ and GLCM (GHS) were utilized. These descriptors were analyzed with MATLAB and classified using robust methods, including Ensemble classifiers. Cross-validation ensured reliability, and results achieved assertiveness rates of 96.7% and 99.3% for LBPHF and LPQ-GLCM combinations, respectively. This study demonstrates the effectiveness of automated methods in enhancing botanical identification processes, offering precise and efficient tools for forest management and biodiversity conservation.

Downloads

Download data is not yet available.

Author Biographies

Anna Thaís Costa Lopes, Universidade Federal do Oeste do Pará

Computer Science student at the Federal University of Western Pará.

Márcio José Moutinho da Ponte, Universidade Federal do Oeste do Pará

PhD by co-tutelle in Electrical and Computer Engineering from the Universidade Nova de Lisboa (2017).

Rafael de Aguiar Rodrigues, Fundação de Estudos Agrários Luiz de Queiroz

Graduated in Forestry Engineering from the Universidade Federal do Oeste do Pará (UFOPA).

Victor Hugo Pereira Moutinho, Universidade Federal do Oeste do Pará

Doctorate in Forest Resources from the Universidade de (2012).

References

Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041. Retrieved from: https://ieeexplore.ieee.org/document/1717463. doi: 10.1109/TPAMI.2006.244 DOI: https://doi.org/10.1109/TPAMI.2006.244

Ahonen, T., Matas, J., He, C., & Pietikäinen, M. (2009). Rotation invariant image description with local binary pattern histogram fourier features. In 16th Scandinavian Conference, Image Analysis (pp. 61–70). Oslo: SCIA. DOI: https://doi.org/10.1007/978-3-642-02230-2_7

Azevedo, E., Conci, A., & Leta, F. R. (2007). Computação gráfica: Teoria e prática (Vol. 2). Rio de Janeiro: Alta Books.

De Paula, P. L. (2012). Reconhecimento de espécies florestais através de imagens macroscópicas (Master’s thesis). Universidade Federal do Oeste do Pará, Santarém, PA, Brazil.

Ferreira, R. L. A., Cerqueira, R. M., & Junior, R. C. C. (2020). Análise da identificação botânica em inventários florestais de planos de manejo sustentáveis no oeste paraense. Nature and Conservation, 13(3), 136-145. Retrieved from: https://sustenere.inf.br/index.php/nature/article/view/CBPC2318-2881.2020.003.0014. doi: https://doi.org/10.6008/CBPC2318 2881.2020.003.0014 DOI: https://doi.org/10.6008/CBPC2318-2881.2020.003.0014

Gonzalez, R. C., & Woods, R. E. (2000). Processamento de magens digitais. Blucher.

Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2015). CloudID: Trustworthy cloud-based and cross-enterprise biometric identification. Expert Systems with Applications, 42(21), 7905–7916. Retrieved from: https://www.sciencedirect.com/science/article/abs/pii/S0957417415004273?via%3Dihub doi: https://doi.org/10.1016/j.eswa.2015.06.025 DOI: https://doi.org/10.1016/j.eswa.2015.06.025

Haralick, R. M., Shanmugam, K., & Others. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621. Retrieved from: https://ieeexplore.ieee.org/document/4309314. doi: 10.1109/TSMC.1973.4309314 DOI: https://doi.org/10.1109/TSMC.1973.4309314

Khalid, M., Lee, E. L. Y., Yusof, R., & Nadaraj, M. (2008). Design of an intelligent wood species recognition system. International Journal of Simulation Systems, Science and Technology, 9(9), 9–19. Retrieved from: https://ijssst.info/Vol-09/No-3/paper2.pdf

Koerich, A. L. (2008). Reconhecimento de padrões em imagens (Ph.D’s thesis). Universidade Federal do Paraná, Curitiba, PR, Brazil.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In 14th International JointConference on Artificial Intelligence (Vol. 2, pp. 1137–1145). San Francisco: Morgan Keufmann Publishers Inc.

Lattin, J., Carroll, J. D., & Green, P. E. (2011). Análise de dados multivariados. Cengage Learning.

Maenpaa, T. (2003). The local binary pattern approach to texture analysis: Extensions and applications (Ph.D’s thesis). Oulun Yliopisto, Oulu, Finland.

Mangina, E., Burke, E., Matson, R., O’Briain, R., Caffrey, J. M., & Saffari, M. (2022). Plant species detection using image processing and deep learning: A mobile-based application. In Information and Communication Technologies for Agriculture—Theme II: Data (pp. 103–130). Springer International Publishing. Retrieved from: https://link.springer.com/chapter/10.1007/978-3-030-84148-5_5. doi: 10.1007/978-3-030-84148-5_5 DOI: https://doi.org/10.1007/978-3-030-84148-5_5

Martins-Da-Silva, R. C. V. (2002). Coleta e identificação de espécimes botânicos. Belém: Embrapa Amazônia Oriental.

Martins, J., Oliveira, L., Nisgoski, S., & Sabourin, R. (2013). A database for automatic classification of forest species. Machine Vision and Applications, 24(3), 567–578. Retrieved from: https://link.springer.com/article/10.1007/s00138-012-0417-5. doi: 10.1007/s00138-012-0417-5 DOI: https://doi.org/10.1007/s00138-012-0417-5

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. Retrieved from: https://www.sciencedirect.com/science/article/abs/pii/0031320395000674. doi: https://doi.org/10.1016/0031-3203(95)00067-4 DOI: https://doi.org/10.1016/0031-3203(95)00067-4

Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987. Retrieved from: https://ieeexplore.ieee.org/document/1017623. doi: 10.1109/TPAMI.2002.1017623 DOI: https://doi.org/10.1109/TPAMI.2002.1017623

Ponte, M. J. M. D. (2017). Referencial semântico no suporte da identificação botânica de espécies amazônicas (Ph.D’s thesis). Universidade Federal do Oeste do Pará, Santarém, PA, Brazil. Retrieved from: https://repositorio.ufopa.edu.br/jspui/handle/123456789/51

Ponti, M. P. Jr. (2004). Combinação de múltiplos classificadores para identificação de materiais em imagens ruidosas (Master’s thesis). Universidade Federal de São Carlos, São Carlos, SP, Brazil.

Ribeiro, A. C. F., Da Fonseca, L. C., & Pereira, C. M. P. (2020). O plano de manejo florestal como instrumento de desenvolvimento sustentável na Amazônia. Direito e Desenvolvimento, 11(1), 264-276. Retrieved from: https://periodicos.unipe.edu.br/index.php/direitoedesenvolvimento/article/view/875. doi: https://doi.org/10.26843/direitoedesenvolvimento.v11i1.875 DOI: https://doi.org/10.26843/direitoedesenvolvimento.v11i1.875

Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470689776

The MathWorks, I. (2019). Classification Learner. The MathWorks.

Tou, J. Y., Lau, P. Y., & Tay, Y. H. (2007). Computer vision-based wood recognition system. Plant Methods, 17, 47. Retrieved from: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-021-00746-1#citeas. doi: https://doi.org/10.1186/s13007-021-00746-1. DOI: https://doi.org/10.1186/s13007-021-00746-1

Tuceryan, M., & Jain, A. K. (1993). Texture analysis. In Handbook of Pattern Recognition and Computer Vision (pp. 235–276). World Scientific. Retrieved from: https://www.worldscientific.com/doi/abs/10.1142/9789814343138_0010?srsltid=AfmBOorz5xKFY6nf3KymhYLgYX6I0l6Vf5z3ymXo4LfsmXfsQRqViEiU. doi: https://doi.org/10.1142/9789814343138_0010 DOI: https://doi.org/10.1142/9789814343138_0010

Veras, H. F., Ferreira, M. P., Neto, E. M. C., Figueiredo, E. O., Corte, A. P. D., & Sanquetta, C. R. (2022). Fusing multi-season UAS images with convolutional neural networks to map tree species in Amazonian forests. Ecological Informatics, 71, 101815. Retrieved from: https://www.sciencedirect.com/science/article/abs/pii/S1574954122002655. doi: https://doi.org/10.1016/j.ecoinf.2022.101815 DOI: https://doi.org/10.1016/j.ecoinf.2022.101815

Vieira, G. L. S., Ponte, M. J. M., Moutinho, V. H. P., Jardim-Gonçalves, R., Lima, C. P., & Vinagre, M. V. (2022). Identification of wood fromthe Amazon by characteristics of Haralick and Neural Network: image segmentation and polishing of the surface. iForest - Biogeosciences and Forestry, 15(4), 234. Retrieved from: https://iforest.sisef.org/abstract/?id=ifor3906-015. doi: https://doi.org/10.3832/ifor3906-015 DOI: https://doi.org/10.3832/ifor3906-015

Xu, B., Chai, L., & Zhang, C. (2021). Research and application on corn crop identification and positioning method based on Machine vision. Information Processing in Agriculture, 8(4), 505–513. Retrieved from: https://www.sciencedirect.com/science/article/pii/S2214317321000603?via%3Dihub. doi: https://doi.org/10.1016/j.inpa.2021.07.004 DOI: https://doi.org/10.1016/j.inpa.2021.07.004

Yu, H., Cao, J., Liu, Y., & Luo, W. (2009). Non-equal spacing division of HSV components for wood image retrieval. International Congress on Image and Signal Processing, New York, USA, 2. Retrieved from: https://ieeexplore.ieee.org/document/5303915/similar. doi: 10.1109/CISP.2009.5303915 DOI: https://doi.org/10.1109/CISP.2009.5303915

Zhu, J., Hoi, S. C., Lyu, M. R., & Yan, S. (2008). Near-duplicate keyframe retrieval by nonrigid image matching. In Proceedings of the 16th ACM international conference on Multimedia (pp. 41–50). New York: ACM. Retrieved from: https://dl.acm.org/doi/10.1145/1459359.1459366. doi: https://doi.org/10.1145/1459359.1459366 DOI: https://doi.org/10.1145/1459359.1459366

Downloads

Published

2025-04-01

How to Cite

Lopes, A. T. C., Ponte, M. J. M. da, Rodrigues, R. de A., & Moutinho, V. H. P. (2025). Computer vision-based wood identification: an approach with LPQ and GLCM descriptors integrated with Ensemble classification. Ciência E Natura, 47, e86097. https://doi.org/10.5902/2179460X86097

Issue

Section

Biology-Botany