Size effects in itabirite jigging under high frequency

Authors

DOI:

https://doi.org/10.5902/2179460X85455

Keywords:

Gravity concentration, Mineral jig, Iron ore, Itabirite

Abstract

Concentration jigs have been used in ore dressing since the Middle Ages. Contrary to other sorting methods, gravity separation is a unit operation that implies low operational and environmental costs. This work describes the effect of particle size on separation efficiency using synthetic quartz and hematite mixes, simulating itabirite ores. The technological parameters of a Harz-Denver type jig were studied as a rougher stage at bench scale, employing previously sized samples. The experiments were carried out using 12 size classes, under a stroke amplitude of 7.0 mm and various pulse frequencies, including values above those historically practiced in the industry. Hematite content in prepared feeds was 40 %, 50 % and 60 %. It was observed that the jig has better performance with feed contents below 50 % hematite in the case of blends of middle and fine particles. The results were very promising. The concentrate average hematite grade was 89.35 %, from 40 % hematite feed, while the corresponding recovery was 97.62 % and a very high Gaudin’s selectivity index of 12.37. Nevertheless, the jig did not perform so well when it treated global samples (mix of all size classes), indicating the importance of the proper granulometric grading of the ore particles.

Downloads

Download data is not yet available.

Author Biographies

Assamo Esmael Amad Valy, Universidade Federal de Ouro Preto

Master's degree in mineral processing from the Postgraduate Program in Mineral Engineering (PPGEM) at the Federal University of Ouro Preto.

José Aurélio Medeiros da Luz, Universidade Federal de Ouro Preto

PhD in Metallurgical and Mining Engineering from the Federal University of Minas Gerais

References

Aguiar, J. M. E. (2015). Phenomenological numerical modelling of a mineral jig using parallel processing (Ph.D. Thesis). University of Porto, Porto, Portugal. Recovered from https://repositorio-aberto.up.pt/handle/10216/80648.

Brito, R., & Soto, R. (2010). Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. The European Physical Journal Special Topics, 179, 207-219. doi: 10.1140/epjst/e2010-01204-5. DOI: https://doi.org/10.1140/epjst/e2010-01204-5

DallaValle, J. M., McBride, J. P., Allred, V. D. & Jones, E. V. (1958). Application of hindered settling to particle size measurement. Oak Ridge: Oak Ridge National Laboratory. Retrieved from https://www.osti.gov/servlets/purl/4295235. DOI: https://doi.org/10.2172/4295235

Gallas, J. A. C., Herrmann, H. J., Piischel, T. & Sokolowski, S. (1996). Molecular dynamics simulation of size segregation in three dimensions. Journal of Statistical Physics, 82(1/2), 443-450. doi: 10.1007/BF02189239. DOI: https://doi.org/10.1007/BF02189239

Gaudin, A. M. (1939). Principles of mineral dressing. New York: McGraw-Hill.

Jinnouchi, Y., Kita, S., Tanaka, M. & Sawada, Y. (1984). New trends in theory and technology of the pulsated jigs in Japan. Minerals and Metallurgical Processing, 1, 76 – 81. doi: 10.1007/BF03402557. DOI: https://doi.org/10.1007/BF03402557

Kelly, E. G. & Spottiswood, D. J. (1982). Introduction to Mineral Processing. New York: John Wiley; Interscience.

Li, T., Cheng, K., Peng, Z., Yang, H. & Hou, M. (2023). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: unveiling the mechanism of the Brazil nut effect. Chinese Physics B., 32(10), 104501. doi: 10.1088/1674-1056/acf040. DOI: https://doi.org/10.1088/1674-1056/acf040

Luz, J. A. M. (2009, agosto). Aspectos reológicos de polpas em sedimentação. Anais do Congresso da ABM. São Paulo, SP, Brasil, 64. doi: 10.5151/2594-5327-15340 DOI: https://doi.org/10.5151/2594-5327-15340

Luz, J. A. M. (2023). Beneficiamento de minérios e resíduos por métodos densitários (notas de aula). Ouro Preto: autor.

Mayer, F. W. (1964). Fundamentals of a potential theory of the jigging process. Proceedings of IMPC. New York, United States of America, 7. doi: 10.3390/min10110998 DOI: https://doi.org/10.3390/min10110998

Mukherjee, A. K., Bhattacharjee, D. & Mishra, B. K. (2006). Role of water velocity for efficient jigging of iron ore. Minerals Engineering, 19, 952–959. doi: 10.1016/j.mineng.2005.10.023 DOI: https://doi.org/10.1016/j.mineng.2005.10.023

Mukherjee, A. K. & Mishra, B. K. (2006.) An integral assessment of the role of critical process parameters on jigging. International Journal of Mineral Processing, 81(3), 187–200. doi: 10.1016/j.minpro.2006.08.005 DOI: https://doi.org/10.1016/j.minpro.2006.08.005

Mukherjee, A. K., Dwivedi, V. K. & Mishra, B. K. (2005). Analysis of a laboratory jigging system for improved performance. Minerals Engineering, 18(10), 1037–1044. doi: 10.1016/j.mineng.2005.01.017 DOI: https://doi.org/10.1016/j.mineng.2005.01.017

Sampaio, C. H. & Tavares, L. M. M. (2005). Beneficiamento Gravimétrico: Uma introdução aos processos de concentração mineral e reciclagem de materiais por densidade. Porto Alegre: UFRGS.

Silva, A. C., Tomaz, R. S., Sousa, D. N., Silva, E. M. S., Barros, M. R. & Fontes, T. P. (2016). Influence of pulsation frequency in iron oxide jigging. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM'16). Budapest, Hungary, 2. doi: 10.11159/mmme16.121. DOI: https://doi.org/10.11159/mmme16.121

Steiner, H. J. A. (1996). Contribution of theory of jigging, Part I: Similarity criteria of the motion of jig layers. Minerals Engineering, 9(6), 675–686. doi: 10.1016/0892-6875(96)00055-6 DOI: https://doi.org/10.1016/0892-6875(96)00055-6

Steinour, H. H. (1943). Rate of sedimentation: nonflocculated suspensions of uniform spheres. Ind. Eng. Chem., 36, 618–624. doi: 10.1021/ie50415a005 DOI: https://doi.org/10.1021/ie50415a005

Turton, R. & Levenspiel, O. (1986). A Short note on the drag correlation for spheres. Powder Technology, 47, 83–86. doi: 10.1016/0032-5910(86)80012-2 DOI: https://doi.org/10.1016/0032-5910(86)80012-2

Ya-Li, K., Jin-Wu, Z., Li, W. & Chao, Y. (2008). Laws of motion of particles in a jigging process. J. China Univ Mining & Technol, 18(4), 0575–0579. doi: 10.1016/S1006-1266(08)60297-7 DOI: https://doi.org/10.1016/S1006-1266(08)60297-7

Wills, B. & Napier-Munn, T. (2005). Wills' mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery (7th. ed.). New York: Butterworth-Heinemann. DOI: https://doi.org/10.1016/B978-075064450-1/50003-5

Downloads

Published

2025-04-01

How to Cite

Valy, A. E. A., & Luz, J. A. M. da. (2025). Size effects in itabirite jigging under high frequency. Ciência E Natura, 47, e85455. https://doi.org/10.5902/2179460X85455