How has deforestation affected and might affect the climate in the Amazon basin during the rainy season?
DOI:
https://doi.org/10.5902/2179460X85441Keywords:
Deforestation, Regional modeling climate, Climate changesAbstract
Changes in land use and land cover in the Amazon rainforest, whether due to natural or anthropogenic causes, are occurring at increasingly rapid rates, with potential implications for regional climate. Therefore, studies aiming to understand the effects of deforestation on the Amazon basin are becoming highly necessary. The main objective of this study was to understand, through regional numerical modeling, how deforestation has been affecting and may affect in the future the spatial pattern of precipitation and temperature in the Amazon basin during the rainy season. To achieve this, data from numerical experiments with different spatial scales of deforestation in the Amazon were used. These data were generated by the regional ETA model forced by the HadGEM2-ES model for a 30-year period. The analyses were performed in the form of climate anomalies. For the current climate, the results indicate that a scenario of partial deforestation would lead to significant increases in temperature and a slight local increase in precipitation in the Arc of Deforestation region. On the other hand, a scenario in which the entire Amazon Forest is removed showed more prominent increases in temperature and reductions in precipitation throughout the Amazon basin.
Downloads
References
Aragão, L. E. O., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L., & Saatchi, S. (2008). Interactions between rainfall,
deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1779-1785. https://doi.org/10.1098/rstb.2007.0026
Alves, L. M., Marengo, J. A., Fu, R., & Bombardi, R. J. (2017). Sensitivity of Amazon regional climate to deforestation. American Journal of Climate Change, 6(1), 75-98. https://doi.org/10.4236/ajcc.2017.61005
Ananias, D. D. S., Souza, E. B. D., Souza, P. F. S., Souza, A. M. L. D., Vitorino, M. I., Teixeira, G. M., & Ferreira, D. B. D. S. (2010). Climatologia da estrutura vertical da atmosfera em novembro para Belém-PA. Revista Brasileira de Meteorologia, 25, 218-226. https://doi.org/10.1590/S0102-77862010000200006
Artaxo, P., Dias, M. A. F. D. S., Nagy, L., Luizão, F. J., Cunha, H. B. D., Quesada, C. A., ... & Krusche, A. (2014). Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Ciência e Cultura, 66(3), 41-46. http://dx.doi.org/10.21800/S0009-67252014000300014
Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., ... & Wiltshire, A. (2011). The HadGEM2 family of met office unified model climate configurations. Geoscientific Model Development, 4(3), 723-757. https://doi.org/10.5194/gmd-4-723-2011
Betts, A. K., & Miller, M. J. (1986). A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473), 693-709. https://doi.org/10.1002/qj.49711247308
Brito, A. L., Veiga, J. A. P., Correia, F. W., & Capistrano, V. B. (2019). Avaliação do desempenho dos modelos HadGEM2-ES e Eta a partir de indicadores de extremos climáticos de precipitação para a Bacia Amazônica. Revista Brasileira de Meteorologia, 34, 165-177. https://doi.org/10.1590/0102-77863340003
Butt, E. W., Baker, J. C., Bezerra, F. G. S., von Randow, C., Aguiar, A. P., & Spracklen, D. V. (2023). Amazon deforestation causes strong regional warming. Proceedings of the National Academy of Sciences, 120(45), e2309123120. https://doi.org/10.1073/pnas.2309123120
Chaddad, F., Mello, F. A., Tayebi, M., Safanelli, J. L., Campos, L. R., Amorim, M. T. A., ... & Demattê, J. A. (2022). Impact of mining-induced deforestation on soil surface temperature and carbon stocks: A case study using remote sensing in the Amazon rainforest. Journal of South American Earth Sciences, 119, 103983. https://doi.org/10.1016/j.jsames.2022.103983
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., ... & Woodward, S. (2011). Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4), 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
Correia, F. W. S., Alvalá, R. C. D. S., & Manzi, A. O. (2008). Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theoretical and Applied Climatology, 93, 225-244. https://doi.org/10.1007/s00704-007-0335-z
Costa, M. H., & Foley, J. A. (2000). Combined effects of deforestation and doubled atmospheric CO 2 concentrations on the climate of Amazonia. Journal of Climate, 13(1), 18-34. https:// doi.org/10.1175/1520-0442(2000)013
Costa, M. H., & Pires, G. F. (2010). Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. International Journal of Climatology, 30(13), 1970-1979. https://doi.org/10.1002/joc.2048
Cox, P. M. (2001). Description of the” TRIFFID” dynamic global vegetation model
Da Silva, R. R., Werth, D., & Avissar, R. (2008). Regional impacts of future land-cover changes on the Amazon basin wet-season climate. Journal of climate, 21(6), 1153-1170. https://doi.org/10.1175/2007JCLI1304
Da Silva, H. J. F., Gonçalves, W. A., & Bezerra, B. G. (2019). Comparative analyzes and use of evapotranspiration obtained through remote sensing to identify deforested areas in the Amazon. International Journal of Applied Earth Observation and Geoinformation, 78,
-174. https://doi.org/10.1016/j.jag.2019.01.015
Da Silva, R. M., Lopes, A. G., & Santos, C. A. G. (2023). Deforestation and fires in the Brazilian Amazon from 2001 to 2020: Impacts on rainfall variability and land surface temperature. Journal of Environmental Management, 326, 116664. https://doi.org/10.1016/j.jenvman.2022.116664.
Debortoli, N., Dubreuil, V., Hirota, M., Rodrigues Filho, S., Lindoso, D. P., & Nabucet, J. (2016). Detecting deforestation impacts in Southern Amazonia rainfall using rain gauges. International Journal of Climatology, 37(6), 2889-2900. https://doi.org/10.1002/joc.4886
De Brito Gomes, W., Correia, F. W. S., Capistrano, V. B., Veiga, J. A. P., Vergasta, L. A., Chou, S. C., ... & Rocha, V. M. (2020). Water budget changes in the Amazon basin under RCP 8.5 and deforestation scenarios. Climate Research, 80(2), 105-120. http://dx.doi.org/10.3354/cr01597
De Oliveira, A. P., & Fitzjarrald, D. R. (1994). The Amazon river breeze and the local boundary layer: II. Linear analysis and
modelling. Boundary-Layer Meteorology, 67(1), 75-96. https://doi.org/10.1007/BF00705508
De Oliveira, J. V., Ferreira, D. B. D. S., Sahoo, P. K., Sodré, G. R. C., de Souza, E. B., & Queiroz, J.C. B. (2018). Differences in precipitation and evapotranspiration between forested and deforested areas in the Amazon rainforest using remote sensing data. Environmental earth sciences, 77, 1-14.https:/doi.org/10.1007/s12665-018-7411- 9”https://doi.org/10.1007/s12665-018-7411-9
Dickinson, R. E., & Kennedy, P. (1992). Impacts on regional climate of Amazon deforestation. Geophysical Research Letters, 19(19), 1947-1950. https://doi.org/10.1029/92GL01905
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amézquita, F. F., Cabrera, D. G., Huasco, W. H., ... & Malhi, Y. (2015). Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 519(7541), 78-82. https://doi.org/10.1038/nature14213
Durieux, L., Machado, L. A. T., & Laurent, H. (2003). The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing of Environment, 86(1), 132-140. https://doi.org/10.1016/S0034-4257(03)00095-6
Eiras‐Barca, J., Dominguez, F., Yang, Z., Chug, D., Nieto, R., Gimeno, L., & Miguez‐Macho, G. (2020). Changes in South American
hydroclimate under projected Amazonian deforestation. Annals of the New York Academy of Sciences, 1472(1), 104-122. https://doi.org/10.1111/nyas.14364
Eltahir, E. A., & Bras, R. L. (1994). Sensitivity of regional climate to deforestation in the Amazon basin. Advances in Water Resources, 17(1-2), 101-115. https://doi.org/10.1016/0309-1708(94)90027-2
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., ... & Tarpley, J. D. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 108(D22). https://doi.org/10.1029/2002JD003296
Fels, S. B., & Schwarzkopf, M. D. (1975). The simplified exchange approximation: A new method for radiative transfer calculations. Journal of Atmospheric Sciences, 32(7), 1475-1488. https://doi.org/10.1175/1520-0469(1975)032%3C1475:TSEAAN%3E2.0.CO;2”2.0.CO;2
Fonseca, P., Veiga, J. A., Corrêa, F. W., Chan, C., & Lyra, A. (2017). An analysis of rainfall extremes in the Northern South America and their behaviors for future climate based on A1B scenario. Revista Brasileira de Climatologia, 20. https://doi.org/10.5380/abclima.v20i0.47932
Gandu, A. W., Cohen, J. C. P., & De Souza, J. R. S. (2004). Simulation of deforestation in eastern Amazonia using a high-resolution
model. Theoretical and Applied Climatology, 78, 123-135. https://doi.org/10.1007/s00704-004-0048-5
Gash, J. H. C., & Nobre, C. A. (1997). Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bulletin of the American meteorological society, 78(5), 823-830. https://doi.org/10.1175/1520-0477(1997)078%3C0823:CEOADS%3E2.0.C O;2”2.0.CO;2
INPE. (2017, January). Projeto PRODES: Monitoring the Brazilian Amazon Forest by satellite. São José dos Campos, Brazil. http://www.obt.inpe.br/prodes/index.php
INPE. (2022, January). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite. PRODES-Amazônia. Taxa PRODES Amazônia 2004-2021 (km²). http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
Hansen, J. E., & Lacis, A. A. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci, 31, 118-133. https://doi. org/10.1175/1520-0469(1974)031%3C0118:APFTAO%3E2.0.CO;2”2.0.CO;2
Lean, J., & Rowntree, P. R. (1993). A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quarterly Journal of the Royal Meteorological Society, 119(511), 509-530. https://doi.org/10.1002/qj.49711951109
Lean, J., & Rowntree, P. R. (1997). Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. Journal of Climate, 10(6), 1216-1235. https://doi.org/10.1175/1520-0442(1997)010%3C1216:UTS OAG%3E2.0.CO;2”2.0.CO;2
Lean, J., & Warrilow, D. A. (1989). Simulation of the regional climatic impact of Amazon deforestation. Nature, 342(6248), 411-413. https://doi.org/10.1038/342411a0
Leite‐Filho, A. T., de Sousa Pontes, V. Y., & Costa, M. H. (2019). Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. Journal of Geophysical Research: Atmospheres, 124(10), 5268-5281. https://doi.org/10.1029/2018JD029537
Leite‐Filho, A. T., Costa, M. H., & Fu, R. (2020). The southern Amazon rainy season: the role of deforestation and its interactions with large‐scale mechanisms. International Journal of Climatology, 40(4), 2328-2341. https://doi.org/10.1002/joc.6335
Lejeune, Q., Davin, E. L., Guillod, B. P., & Seneviratne, S. I. (2015). Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dynamics, 44, 2769-2786. https://doi.org/10.1007/s00382-014-2203-8
Limberger, L., & Silva, M. E. S. (2016). Precipitação na bacia amazônica e sua associação à variabilidade da temperatura da superfície dos oceanos Pacífico e Atlântico: uma revisão. GEOUSP Espaço e Tempo (Online), 20(3), 657-675. https://doi.org/10.11606/issn.2179-0892.geousp.2016.105393
Llopart, M., Reboita, M. S., Coppola, E., Giorgi, F., Da Rocha, R. P., & De Souza, D. O. (2018). Land use change over the Amazon Forest and its impact on the local climate. Water, 10(2), 149. https://doi.org/10.3390/w10020149
Marengo, J. A. (2006). On the hydrological cycle of the Amazon Basin: A historical review and current state-of-the-art. Revista brasileira de meteorologia, 21(3), 1-19
Marengo, J. A., & Espinoza, J. C. (2016). Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. International Journal of Climatology, 36(3). https://doi.org/10.1002/joc.4420
Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the atmospheric sciences, 31(7), 1791-1806. https://doi.org/10.1175/1520-0469(1974)031%3C1791:AHOTCM%3E2.0.C O;2”2.0.CO;2
Mesinger, F. (1984). A blocking technique for representation of mountains in atmospheric models. Riv. Meteorol. Aernonaut., 44, 195-202
Mesinger, F., Chou, S. C., Gomes, J. L., Jovic, D., Bastos, P., Bustamante, J. F., ... & Veljovic, K. (2012). An upgraded version of the Eta model. Meteorology and Atmospheric Physics, 116, 63-79. https://doi.org/10.1007/s00703-012-0182-z
Moreira, R. M. (2024). Trends and correlation between deforestation and precipitation in the Brazilian Amazon Biome. Theoretical and Applied Climatology, 155(5), 3683-3692. https://doi.org/10.1007/s00704-024-04838-5
Mota, M., & Souza, P. (1996). Influência da precipitação nas características termodinâmicas da atmosfera durante um mês seco. In CONGRESSO BRASILEIRO DE METEOROLOGIA (Vol. 9, pp. 1136-1138)
Mu, Y., & Jones, C. (2022). An observational analysis of precipitation and deforestation age in the Brazilian Legal Amazon. Atmospheric Research, 271, 106122. https://doi.org/10.1016/j.atmosres.2022.106122
Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian deforestation and regional climate change. Journal of climate, 4(10), 957-988. https://doi.org/10.1175/1520-0442(1991)004%3C0957:ADARCC%3E2.0.CO;2”2.0.CO;2
Nobre, C. A., Sampaio, G., & Salazar, L. (2007). Mudanças climáticas e Amazônia. Ciência e Cultura, 59(3), 22-27
O’Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., ... & Pyle, J. A. (2014). Evaluation of the new
UKCA climate-composition model–Part 2: The Troposphere. Geoscientific Model Development, 7(1), 41-91. https://doi.org/10.5194/gmd-7-41-2014
O’Connor, J. C., Santos, M. J., Dekker, S. C., Rebel, K. T., & Tuinenburg, O. A. (2021). Atmospheric moisture contribution to the growing season in the Amazon arc of deforestation. Environmental Research Letters, 16(8), 084026. https://doi.org/HYPERLINK “https://doi.org/10.1088/1748-9326/ac12f0”10.1088/1748-9326/ac12f0
Palmer, J. R., & Totterdell, I. J. (2001). Production and export in a global ocean ecosystem model. Deep Sea Research Part I: Oceanographic Research Papers, 48(5), 1169-1198. https://doi.org/10.1016/S0967-0637(00)00080-7
Reboita, M. S., Gan, M. A., Rocha, R. P. D., & Ambrizzi, T. (2010). Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista brasileira de meteorologia, 25, 185-204. https://doi.org/10.1590/S0102-77862010000200004
Rocha, V. M., Correia, F. W. S., Satyamurty, P., de Freitas, S. R., Moreira, D. S., da Silva, P. R. T., & Fialho, E. S. (2014). Impacts of land cover and greenhouse gas (GHG) concentration changes on the hydrological cycle in amazon basin: a regional climate model study. Revista Brasileira de Climatologia, 15. https://doi.org/10.5380/abclima.v15i0.36386
Rocha, V. M. (2016). Avaliação dos impactos das mudanças climáticas na reciclagem de precipitação da Amazônia: Um estudo de modelagem numérica. Revista Brasileira de Climatologia, 19. https://doi.org/10.5380/abclima.v19i0.48875
Rocha, V. M., Correia, F. W. S., & Gomes, W. B. (2019). Avaliação dos impactos da mudança do clima na precipitação da Amazônia utilizando o modelo RCP 8.5 Eta-HadGEM2-ES. Revista Brasileira de Geografia Física, 12(06), 2051-2065. https://doi.org/10.26848/rbgf.v12.6.p2051-2065
Rodriguez, D. A., Chou, S. C., Tomasella, J., & Demaria, E. M. (2014). Impacts of landscape fragmentation on simulated precipitation fields in the Amazonian sub-basin of Ji-Paraná using the Eta model. Theoretical and applied climatology, 115, 121-140. https://doi.org/10.1007/s00704-013-0866-4
S. Debortoli, N., Dubreuil, V., Funatsu, B., Delahaye, F., De Oliveira, C. H., Rodrigues-Filho, S., ... & Fetter, R. (2015). Rainfall patterns in the Southern Amazon: a chronological perspective (1971–2010). Climatic Change, 132, 251-264. https://doi.org/10.1007/s10584-015-1415-1
Salati, E., Dall’Olio, A., Matsui, E., & Gat, J. R. (1979). Recycling of water in the Amazon basin: an isotopic study. Water resources research, 15(5), 1250-1258. https://doi.org/10.1029/WR015i005p01250
Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares‐Filho, B. S., & Cardoso, M. (2007). Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34(17). https://doi.org/10.1029/2007GL030612
Sampaio, G., Shimizu, M., Guimarães-Júnior, C. A., Alexandre, F., Cardoso, M., Domingues, T. F., ... & Lapola, D. M. (2020). CO 2 fertilization effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences Discussions, 2020, 1-21. https://doi.org/10.5194/bg-18-2511-2021
Sestini, M. F., ALVALÁ, R. D. S., Mello, E. M. K., VALERIANO, D. D. M., Chan, C. S., Nobre, C. A., ... & REIMER, E. D. S. (2002). Elaboração de mapas de vegetação para utilização em modelos meteorológicos e hidrológicos. São José dos Campos: INPE, 74
Silva, M. E. S., Pereira, G., & da Rocha, R. P. (2016). Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”. Theoretical and Applied Climatology, 125, 609-623. https://doi.org/10.1007/s00704-015-1516-9
Shukla, J., Nobre, C., & Sellers, P. (1990). Amazon deforestation and climate change. Science, 247(4948), 1322-1325. https://doi.org/10.1126/science.247.4948.1322
Soares‐Filho, B., Alencar, A., Nepstad, D., Cerqueira, G., Vera Diaz, M. D. C., Rivero, S., ... & Voll, E. (2004). Simulating the response of land‐cover changes to road paving and governance along a major Amazon highway: the Santarém–Cuiabá corridor. Global change biology, 10(5), 745-764. https://doi.org/10.1111/j.1529-8817.2003.00769.x
Zhao, Q., Black, T. L., & Baldwin, M. E. (1997). Implementation of the cloud prediction scheme in the Eta Model at NCEP. Weather and Forecasting, 12(3), 697-712. https://doi.org/10.1175/1520-0434(1997)012%3C0697:IOTCPS%3E2.0.CO;2”2.0.CO;2
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.