Development, characterization and cytogene-ecotoxicological bioassay of different free and nanoestrutured formulations containing trans-anethole

Authors

DOI:

https://doi.org/10.5902/2179460X73826

Keywords:

Nanotechnology, Biotechnology, Toxicity, Anethole

Abstract

Trans-anethole is an aromatic compound found in large amounts in the essential oil of various plants, such as star anise. It is recognized for its culinary and traditional medicinal uses. Despite its potential, the low solubility, and complex characteristics, hinder its absorption in the human body. To overcome this challenge, nanotechnology has emerged as a promising solution. In this study, nanocapsules and nanoemulsions containing trans-anethole were developed and characterized for physical-chemical parameters, including particle diameter, zeta potential, pH, polydispersity index, encapsulation rate, and content stability over a 90-day period. Biological assessments were conducted using cytogenotoxicity tests on PBMC cells, and a toxicological bioassay with Artemia salina. The results demonstrated that the nanostructured systems remained stable for 90 days under refrigeration, exhibiting compatible pH, polydispersity index, zeta potential, and particle diameter for biomedical applications, while also exhibiting no cytotoxic or genotoxic activity. The toxicological assays revealed significant protection against the toxicity of trans-anethole when delivered in the nanostructured systems, as compared to its free form.

Downloads

Download data is not yet available.

Author Biographies

Cláudia Grigolo Pinto, Franciscan University

Doctor in Nanosciences from the Franciscan University (UFN).

Walter Paixão de Sousa Filho, Franciscan University

PhD Student at the Franciscan University (UFN)

Ariane Schneider Colusso, Franciscan University

Master in Nanosciences from the Franciscan University (UFN)

 

Gabriela Guarenti Fruet, Franciscan University

Acadêmica do curso de engenheira química, iniciação científica em Nanociências, Universidade Franciscana (UFN).

Évelin Cogo de Oliveira, Franciscan University

Master in Nanosciences from the Franciscan University (UFN)

Andiara Ramos Prates, Franciscan University

PhD student in Nanosciences at the Franciscan University (UFN)

, Franciscan University

Professor of Environmental Engineering. Franciscan University

 

Cristiano Bohn Rhoden, Franciscan University

Professor of Postgraduate Program of Postgraduate in Nanoscience inFranciscan University

Michele Rorato Sagrillo, Franciscan University

Professor of Postgraduate Program of Postgraduate in Nanociense in Franciscan University

Liana da Silva Fernandes, Franciscan University

Professor of Postgraduate Program of Postgraduate in Nanociense in Franciscan University

References

Alves, M. , Scarrone, A. L., Santos, M., Pohlmann, A. R., & Guterres, S. S. (2007). Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. International Journal of Pharmaceutics, 341(1–2), 215–220. doi: https://doi.org/10.1016/j.ijpharm.2007.03.031

Angeli, W. (2007). Desenvolvimento e Caracterização de formulações fotoprotetoras contendo nanocápsulas. (Tese de doutorado). Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BRasil. Recuperado de :http://www.lume.ufrgs.br/handle/10183/10876.

Bruckmann, F. Da S., Viana, A. R., Lopes, L. Q. S., Santos, R. C. , Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459–1472. doi: https://doi.org/10.1007/s10904-021-02207-7

Carvalho, C., Matta, S., Melo, F., Andrade, D., Carvalho, L., Nascimento, Silva, M., & Rosa, M. (2009). Cipó-Cravo (Tynnanthus Fasciculatus Miers – Bignoniaceae): Estudo Fitoquímico E Toxicológico Envolvendo Artemia Salina. Revista Eletrônica de Farmácia, 6(1). doi: https://doi.org/10.5216/ref.v6i1.5861

Choo, E. J., Rhee, Y. H., Jeong, S. J., Lee, H. J., Kim, H. S., Ko, H. S., Kim, J. H., … Kim, S. H.(2011). Anethole exerts antimetatstaic activity via inhibition of matrix metalloproteinase 2/9 and AKT/mitogen-activated kinase/nuclear factor kappa B signaling pathways. Biological and Pharmaceutical Bulletin, 34(1), 41–46. doi: https://doi.org/10.1248/bpb.34.41

Ciapetti, G., Granchi, D., Verri, E., Savarino, L., Cavedagna, D., & Pizzoferrato, A.(1996). Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials, 17(13), 1259–1264. doi: https://doi.org/10.1016/S0142-9612(96)80001-9

Colusso, A. S. (2016). Produção e Caracterização de Nanocápsulas contendo Trans-Anetol e Avaliação In Vitro da capacidade antioxidante. (Dissertação de mestrado). Universidade Franciscana, Santa Maria, RS, Brasil. Recuperado de: http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/545.

Costa-Lotufo, L. , Montenegro, R. C., Alves, A. N. N., Madeira, S. F., Pessoa, C., Moraes, M. E. A., & Moraes, M. O. (2010). A Contribuição dos Produtos Naturais como Fonte de Novos Fármacos Anticâncer: Estudos no Laboratório Nacional de Oncologia Experimental da Universidade Federal do Ceará. Revista Virtual de Química, 2(1). doi: https://doi.org/10.5935/1984-6835.20100006

Dawson, R. M. C., Elliott, D., Elliott, W. H., & Jones, K. M. (1989). Data for Biochemical Research. (3rd ed.). Oxford: Jones Oxford University Press.

Durán, N., Mattoso, L. H. C., & Morais, C. (2006). Nanotecnologia: introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. (1a ed.). São Paul: Artliber.

Falanga, A., Marchetti, M., Giovanelli, S., & Barbui, T.(1996). All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4). Blood, 87(2), 613–7. Retrieved from:http://www.ncbi.nlm.nih.gov/pubmed/8555483.

Fessi, H., Puisieux, F., & Devissaguet, J. (1988). Procédé de préparation de systèmes colloidaux dispersibles d’une substance, sous forme de nanocapsules. EP 0274961. Concessão.

Fessi, H., Puisieux, F., Devissaguet, J., Ammoury, N., & Benita, S. (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 55(1), R1–R4. doi: https://doi.org/10.1016/0378-5173(89)90281-0

Fronza, A. B. (2010). Associação entre audição, tabagismo e genotoxicidade em adultos jovens. (Dissertação de mestrado). Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. Recuperado de : https://repositorio.ufsm.br/handle/1/28475?show=full.

Franceschi, C. M., Tochetto, T., Silveira, A. F., Fantinel, M. R., & Algarve, T. D.(2011). Cisplatin effects on guinea pigs: Cochlear histology and genotoxicity. Brazilian Journal of Otorhinolaryngology, 77(6), 728–735. doi: https://doi.org/10.1590/s1808-86942011000600009

Fujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Current Drug Targets: Inflammation and Allergy, 4(3), 281–286. doi: https://doi.org/10.2174/1568010054022024

Galicka, A., Krętowski, R., Nazaruk, J., & Cechowska-Pasko, M. (2014). Anethole prevents hydrogen peroxide-induced apoptosis and collagen metabolism alterations in human skin fibroblasts. Molecular and Cellular Biochemistry, 394(1–2), 217–224. doi: https://doi.org/10.1007/s11010-014-2097-0

Gambelas, C. (2003). Teste de toxicidade do ião cobre para Artemia salina. Poluição e ecotoxicologia marinha, 1(1), 1–5, 2003.

Gu, J. D. (2019). On applied toxicology. Applied Environmental Biotechnology, 4(2), 1–4. doi: https://doi.org/10.26789/AEB.2019.02.001

Guterres, S. S., Fessi, H., Barratt, G., Devissaguet, J.,& Puisieux, F. (1995). Poly (DL-lactide) nanocapsules containing diclofenac: I. Formulation and stability study. International Journal of Pharmaceutics, 113(1), 57–63. doi: https://doi.org/10.1016/0378-5173(94)00177-7

Krishna, I. , Vanaja, G. R., Kumar, N. S. K.,& Suman, G. (2009). Cytotoxic studies of anti-neoplastic drugs on human lymphocytes - In vitro studies. Cancer Biomarkers, 5(6), 261–272. doi: https://doi.org/10.3233/CBM-2009-0111

Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & Mclaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31–34. doi: https://doi.org/10.1055/s-2007-971236

Müller-Goymann, C. C. (2004). Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 343–356. doi: https://doi.org/10.1016/j.ejpb.2004.03.028

Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. , Somasundaran, , Klaessig, F., … Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7), 543–557. doi: https://doi.org/10.1038/nmat2442

Nikam, T. H., Patil, M. , Patil, S. S., Vadnere, G. P., & Lodhi, S. (2018). Nanoemulsion: A brief review on development and application in Parenteral Drug Delivery. Advance Pharmaceutical Journal, 3(2), 43–54. doi: https://doi.org/10.31024/apj.2018.3.2.2

Nunes, R., Pereira, B. D. A., Cerqueira, M. A., Silva, P. , Pastrana, L. M., Vicente, A. A., Martins, J. T., & Bourbon, A. I. (2020). Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food and Function, 11(3), 1966–1981. doi: https://doi.org/10.1039/c9fo02307k

Oliveira, É. C., Bruckmann, F. Da S., Schopf, F., Viana, A. R., Mortari, S. R., Sagrillo, M. R., Vasconcellos, N. J. S. De, … & Bohn

Rhoden, C. R. (2022). In vitro and in vivo safety profile assessment of graphene oxide decorated with different concentrations of magnetite. Journal of Nanoparticle Research, 24(7), 150. doi: https://doi.org/10.1007/s11051-022-05529-w

Patra, J. K., Das, G., Bose, S., Banerjee, S., Vishnuprasad, C. N., Rodriguez-Torres, M. Del., & Shin, H. S. (2020). Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytotherapy Research, 34(6), 1248–126. doi: https://doi.org/10.1002/ptr.6614

Pérez-Rosés, R., Risco, E., Vila, R., Peñalver, P., & Cañigueral, S. (2015). Effect of some essential oils on phagocytosis and complement system activity. Journal of Agricultural and Food Chemistry, 63(5), 1496–1504. doi: https://doi.org/10.1021/jf504761m

Pérez, Y. G., & Giling, A. (2001). Determinación de la toxicidad aguda del dicromato de potasio en larvas de Artemia salina. Anuario Toxicología, 1(1), 104–112. Retrieved from:https://pesquisa.bvsalud.org/portal/resource/pt/cum-33972.

Rand, G. M., & Petrocelli, S. R. (1985). Fundamentals of aquatic toxicology: Methods and applications. Lodres: Taylor and Francis.

Rios, F. J. (1995). Digestibilidade in vitro e toxicidade de lectinas vegetais para náuplios de Artmia sp. (Dissertação de mestrado). Universidade Federal do Ceará, Fortaleza, CE, Brasil. Recuperado de: https://repositorio.ufc.br/handle/riufc/47539.

Rodriguez, A. G., Teixeira, O. M., Salles, F. G., Vital, J. & Peixoto, D. S. (2009). Bioensaio dom Artemia Salina para Detecção de Toxinas em Alimentos Vegetais. Estudos vida e saúde, 36(5/6), 795–808. doi: https://doi.org/10.18224/est.v36i4.1130

Rogero, S. O., Lugão, A. B., Ikeda, T. I. & Cruz, Á. S.(2003). Teste in vitro de citotoxicidade: estudo comparativo entre duas metodologias. Materials Research, 6(3), 317–320. doi: https://doi.org/10.1590/s1516-14392003000300003

Salles, T. Da R., Bruckamann, F. Da S., Viana, A. R., Krause, L. M. F., Mortari, S. R., & Rhoden, C. R. B. (2022). Magnetic Nanocrystalline Cellulose: Azithromycin Adsorption and In Vitro Biological Activity Against Melanoma Cells. Journal of Polymers and the Environment, 30(7), 2695–2713. Retrieved from:https://doi.org/10.1007/s10924-022-02388-3

Sánchez Leal, J. (1995). Aspectos ecológicos de los detergentes. [S. l.]: Gestió y Promoció Editorial.

Schaffazick, S. R., Guterres, S. S., Freitas, L. De L., & Pohlmann, A. R. (2003). Physicochemical characterization and stability of the polymeric nanoparticle systems for drug administration. Quimica Nova, 26(5), 726–737. doi: https://doi.org/10.1590/s0100-40422003000500017

Sharafan, M., Jafernik, K., Ekiert, H., Kubica., Kocjan, R., Blicharska, E., & Szopa, A. (2022). Illicium verum (Star Anise) and Trans-Anethole as Valuable Raw Materials for Medicinal and Cosmetic Applications. Molecules, 27(3), 650. doi: https://doi.org/10.3390/molecules27030650

Silva, C. J. R. S., Benjamim, C. J. R., Carvalho, L. B., Rocha, E. M. B., & Mori, E. (2018). Determinação Do Teor De Cafeína Em Diferentes Tipos De Cafés. DEMETRA: Alimentação, Nutrição & Saúde, 13(2). doi: https://doi.org/10.12957/demetra.2018.30653

Singh, G., Kapoor, I. S., Singh, H., Lampasona, M. & De, Catalan, C. A. N.(2008) Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and Chemical Toxicology, 46(10), 3295–3302. DOI: https://doi.org/10.1016/j.fct.2008.07.017

Tipping, E., & Abel, D. (1990). Water Pollution Biology. (2nd ed.). [S. l.]: CRC Press. doi: https://doi.org/10.2307/2404317

Viana, A. R., Salles, B., Bruckmann, S. Krause, L. M. F., Mortari, S. R., & Rhoden, C. R. B. (2019). Cytotoxicity study of graphene oxide against vero lineage cells 1. Disciplinarum Scientia, 20(3), 355–364. Retrieved from:https://periodicos.ufn.edu.br/index.php/disciplinarumNT/article/view/2981.

Yu, C., Guo, Y., Yang, Z., Yang, W., & Jiang, S. (2019). Effects of star anise (Illicium verum Hook.f.) essential oil on nutrient and energy utilization of laying hens. Animal Science Journal, 90(7), 880–886. doi: https://doi.org/10.1111/asj.13221

Published

2024-11-29

How to Cite

Pinto, C. G., Sousa Filho, W. P. de, Colusso, A. S., Fruet, G. G., Oliveira, Évelin C. de, Prates, A. R., Vasconcelos, N. J. S., Rhoden, C. B., Sagrillo, M. R., & Fernandes, L. da S. (2024). Development, characterization and cytogene-ecotoxicological bioassay of different free and nanoestrutured formulations containing trans-anethole. Ciência E Natura, 46, e73826. https://doi.org/10.5902/2179460X73826