Effect of supplementation with extract of white bean flour in murine model

Authors

DOI:

https://doi.org/10.5902/2179460X43363

Keywords:

White bean flour, Weight loss, safety, Immunomodulation

Abstract

Common bean supplementation (Phaseolus vulgaris) "in natura" causes loss of body weight associated with a deficiency in nutrient absorption and histopathological changes. This effect has been attributed to phytohemagglutinin (PHA) present in high concentrations in red and white beans. The main objective of this work was to evaluate the safety of white bean flour as a dietary supplement. Animals were treated for 14 days with extract of white bean flour (WBFE) at doses of 2.65g/kg and 5.30g/kg. A significant reduction in body weight was observed, accompanied by the reduction of mean values of glycemia, in both groups in relation to the control group. Significant structural changes were also observed in the intestinal epithelium. Additionally, mice treated with WBFE 5.30g/kg presented mononuclear inflammatory infiltrate in the lamina propria of the intestinal mucosa accompanied by a dose-dependent increase in the dosage of chemokine MCP-1 and nitric oxide, although without causing intestinal and hepatic oxidative and oxidative damage.  The deleterious effects resulting from the use of the WBFE are not permanent since the treated animals after 14 days without WBFE stimuli. In conclusion, commercial bean flour did not prove to be safe as oral dietary supplementation at the dosages used because of the antinutritional and immunomodulatory effects. 

Downloads

Download data is not yet available.

Author Biographies

Emília Torres Costa Marques, Departamento de Medicina e Enfermagem - DEM. Universidade Federal de Viçosa - UFV.

Mestre em Ciências da Saúde, programa de Pós-graduação em Ciências da Saúde, Departamento de Medicina e Enfermagem - DEM. Universidade Federal de Viçosa - UFV. 

Patrizia Mello Coelho, Departamento de Biologia Geral (DBG). Universidade Federal de Viçosa - UFV.

Doutora em Biologia Celular e Estrutural pela Universidade Federal de Viçosa

Alessandra Teixeira de Paula, Departamento de Biologia Geral (DBG). Universidade Federal de Viçosa - UFV.

Doutora em Biologia Celular e Estrutural pela Universidade Federal de Viçosa, UFV, Brasil.

Daniel Silva Sena Bastos, Departamento de Biologia Geral (DBG). Universidade Federal de Viçosa - UFV.

Doutor em Biologia Celular e Estrutural pela Universidade Federal de Viçosa, UFV, Brasil.

Palloma Porto Almeida, Instituto Nacional do Câncer (INCA) no Laboratório de Bioinformática e Biologia Computacional (LBBC).

Mestre em Biologia Celular e Estrutural pela Universidade Federal de Viçosa, UFV, Brasil.

Leandro Licursi de Oliveira, Departamento de Biologia Geral (DBG). Universidade Federal de Viçosa - UFV.

Professor da Universidade Federal de Viçosa, Departamento de Biologia Geral (DBG). 

Silvia Almeida Cardoso, Departamento de Medicina e Enfermagem - DEM. Universidade Federal de Viçosa - UFV.

Professora da Universidade Federal de Viçosa, departamento de Enfermagem e Medicina (DEM-UFV).

References

AGRAWAL, A; SHARMA, B. Pesticides induced oxidative stress in mammalian systems. Int. J. Biol. Vet, 3, 90-104. 2010.

BENJAMIN, CF; FIGUEIREDO, RC; HENRIQUES, MGMO; et al. Inflammatory and anti-inflammatory effects of soybean agglutinin. Braz. J. Med. Biol, 30, 48-54. 1997.

BOGDAN, C. Nitric oxide and the immune response. Nat Immunol, 2 (10):907-16. 2001.

CELLENO, L; TOLAINI, MV; AMORE, A.; et al. Dietary Supplement Containing Standardized Phaseolus vulgaris Extract Influences Body Composition of Overweight Men and Women. Int. J. Med. Sci., v.4, n.1, p. 45-52. 2007.

CHOKSHI, D. Subchronic oral toxicity of a standardized white kidney bean (Phaseolus vulgaris) extract in rats. Food and Chemical Toxicology, v. 45, p. 32-40. 2007.

D'ISCHIA, M; PALUMBO, A; BUZZO, F. Interactions of Nitric Oxide with Lipid Peroxidation Products under Aerobic Conditions: Inhibitory Effects on the Formation of Malondialdehyde and Related Thiobarbituric Acid-Reactive Substances. Nitric Oxide, v. 4, n. 1, p. 4-14. 2000.

DIGNASS, AU; STOW, JL; BABYATSKY, MW Acute epithelial injury in the rat small intestine in vivo is associated with expanded expression of transforming growth factor α and β. Gut, v. 38, p. 687-693. 1996.

DROGE, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95. 2002.

FANTINI, N; CABRAS, C; LOBINA, C; et al. Reducing Effect of a Phaseolus vulgaris Dry Extract on Food Intake, Body Weight, and Glycemia in Rats. J. Agric. Food Chem., v. 57, p. 9316-9323. 2009.

FERRETTI, G; BACCHETTI, T, MASCIANGELO S; et al. Celiac Disease, Inflammation and Oxidative Damage: A Nutrigenetic Approach. Nutrients, 4, 243-257. 2012.

FIGUEIREDO, JG; BITENCOURT FS; MOTA, MR; et al. Pharmacological analysis of the neutrophil migration induced by D. rostrata lectin: involvement of cytokines and nitric oxide. Toxicon, v. 54, n. 6, p. 736-744. 2009.

GISLASON, SJ. Food Choice. Environmed Research Inc., p.121. 2011.

GRIMM, MC; ELSBURY, SK; PAVLI, P; et al. Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel mucosal disease. J. Leukoc. Biol. 59: 804-812. 1996.

GOUVEIA, NM; ALVES, FV; FURTADO, FB; et al. An in vitro and in vivo study of the α-amylase activity of Phaseolamin. Journal of Medicinal Food, v. 17, n.8, p. 915-920. 2014.

HAYAT, I; AHMAD, A; MASUD, T; et al. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Critical Reviews in Food Science and Nutrition, v.54, n.5, p. 580-92. 2014.

HERMES-LIMA, M. Oxygen in biology and biochemistry: role of free radicals. In: Storey, Kenneth B. (Ed.), Functional Metabolism: Regulation and Adaptation. John Wiley & Sons, Inc., Wiley-Liss, NY, pp. 319-368. 2004.

IGHODARO, OM; AKINLOYE, OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med .54. 4, 287-293. 2017.

JUNKER, Y, ZEISSIG, S, KIM, S S; et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Esp. Med, v.209, n. 13, pp. 2395-2408. 2012.

KIK, MJL; HUISMAN, J.; VAN DER POEL, AFB; et al. Pathologic Changes of the small intestinal mucosa of Pigs after feeding Phaseolus vulgaris beans. Vet Pathol, v. 27, p. 329-334. 1990.

KESHERWANI, V.; SODHI, A. Differential activation of macrophages in vitro by lectin Concanavalin A, phytohemagglutinin and wheat germ agglutinin: production and regulation of nitric oxide. Nitric Oxid, v. 16, p. 295-305. 2007.

KUMAR, V.; ABBAS, A; ASTER, J. Pathology - pathological bases of diseases. Elsevier, 8th ed., P. 43-78, 1480 p, Rio de Janeiro, 2010.

KUMAR, S; VERMA, AK; DAS, M; et al. Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption. Nutrition, p. 1-7. 2013.

LEONI, G; NEUMANN, PA; SUMAGIN, R; et al. Wound repair: role of immune-epithelial interactions. Mucosal Immunol., v. 8 (5), p. 959-968. 2015.

LORENZSONN, V; OLSEN, WA. In vivo responses of rat intestinal epithelium to intraluminal dietary lectins. Gastroenterology, v. 82, p. 838-48. 1982.

LORENZ-MEYER, H; ROTH, H; ELSASSER, P; et al. Citotoxicity of lectins on rat intestinal mucosa enhanced by neuraminidase. European Journal of Clinical Investigation, v.15, p. 227-234. 1985.

MARTÍNEZ, RF; GARCIA, KG. TORRESrres AI; et al. Tolerability assessment of a lectin fraction from Terapy bean seeds (Phaseolus acutifolius) orally administered to rats. Toxicology Reports, v.2, p. 63-69. 2015.

MAGDI, O; REID, PM; WEBER, CW. The effect of feeding Tepary bean (Phaseolus acutifolius) proteinase inhibitors on growth on pancreas of mice, J. Nutr., 111-115. 2003.

Ministry of Health, Brazil, portalarquivos.saude.gov.br/pdf/2017/abri/vigitel.pdf

MOLZ, S; CORDEIRO, DN. Hipolipidemic effect of white bean meal (phaseolus vulgaris) on hyperlipidemic mice. Health Environment., v. 3, n. 2, p. 44-52. 2014.

NASI, A; PICARIELLO, G; FERRANTI, P. Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. Journal of Proteomics, vol. 72, pp. 527-538. 2009.

NEIRI, N; CHO, N; BERGAOUI, N; et al. Effect of White Kidney Beans (Phaseolus vulgaris L. var. Beldia) on Small Intestine Morphology and Function in Wistar Rats. Journal of Medicinal Food, v. 18, n. 12, p. 1-13. 2015.

PUNDER K; PRUIMBOOM, L. The Dietary Intake of Wheat and other Cereal Grains and Their Role in Inflammation. Nutrients, 5, 771-787. 2003.

PUSZTAI, A. Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. European Journal of Clinical Nutrition 47, 691-699. 1993.

RAMADASS, B; DOKLADNY, K; MOSELEY PL. Sucrose Co-administration Reduces the Toxic Effect of Lectin on Gut Permeability and Intestinal Bacterial Colonization. Dig Dis Sci, 55: 2778-2784. 2010.

REINECKER, HC; LOH, EY; RINGLER, DJ; et al. Monocyte-chemoattractant protein 1 expression gene in intestinal epithelial cells and inflammatory bowel mucosal disease. Gastroenterology 108: 40-50. 1995.

REZENDE, AA; PACHECO, MTB; SILVA, VSN; FERREIRA TAPC. Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L). Foos Sci Technol, 38(3):421-427. 2018.

SARV, T; HÖRAK, P. Phytohaemagglutinin injection has a long-lasting effect on immune cells. J. Avian Biol. 40: 569-571. 2009.

SIOLANDER, A; MAGNUSSON, KE; LATKOVIC, S. The effect of concanavalin A and wheat germ agglutinin on the ultrastructure and permeability of rat intestine. International Archives of Allergy and Applied Immunology 75, 230-236. 1984.

SIOLANDER, A; MAGNUSSON, KE; LATKOVIC, S. Morphological changes of rat small intestine after short-time exposure to concanavalin A or wheat germ agglutinin. Cell Structure and Function 11, 285-293. 1986.

TAKADA, Y; HISAMATSU, T; KAMADA, N; et al. Monocyte Chemoattractant Protein-1 Contributes to Gut Homeostasis and Intestinal Inflammation by Composition of IL-10-Producing Regulatory Macrophage Subset. J Immunol, 184: 2671-2676.2010.

UDANI, J; HARDY, M; MADSEN, DC. Blocking carbohydrate absorption and weight loss: a clinical trial using a proprietary fractionated white bean extract. Altern. Ther. Health Med., v. 9, p. 63-69. 2004.

VASCONCELOS, IM; OLIVEIRA, JT. Antinutritional properties of plant lectins. Toxicon, v. 44, p. 385-403; 44. 2004.

YOSHIMURA, T; ROBINSON, EA; TANAKA, S; et al. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immuno1, v. 142, p. 1956-1962. 1989.

YOSHIMURA, T; LEONARD, EJ. Secretion by human fibroblasts of monocyte chemoattractant protein-I, the product of gene JE. J Immunol, v. 144, p. 2377-2383. 1990.

YODER, JM; ASLAM, UK; MANTIS, NJ. Evidence for widespread epithelial damage and coincident production of monocyte chemotactic protein 1 in a murine model of intestinal ricin intoxication. INFECTION AND IMMUNITY, p. 1745-1750. 2007.

WEINMAN, MD; ALLAN, CH; TRIER, JS; et al. Repair of microvilli in the rat small intestine after damage with lectins contained in the red kidney bean. Gastroenterology, v. 97, p. 1193-204. 1989.

ZUCOLOTO, S; SCARAMELLO, AC; LAJOLO, FM; et al. Effect of oral phytohaemagglutinin intake on cell adaptation in the epithelium of the small intestine of the rats. Int. J. Exp. Path, v. 72, p. 41-45, 1991.

Downloads

Published

2021-05-18 — Updated on 2022-04-06

Versions

How to Cite

Marques, E. T. C., Coelho, P. M., Paula, A. T. de, Bastos, D. S. S., Almeida, P. P., Oliveira, L. L. de, & Cardoso, S. A. (2022). Effect of supplementation with extract of white bean flour in murine model. Ciência E Natura, 43, e5. https://doi.org/10.5902/2179460X43363 (Original work published May 18, 2021)

Most read articles by the same author(s)