Recursive function theory applied to the logical system elementar arythmetic

Authors

  • Iralino Fidêncio Centenaro Departamento de Matemática, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.
  • Maria Henriqueta Ferrari Centenaro Departamento de Matemática, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.

DOI:

https://doi.org/10.5902/2179460X25032

Abstract

The notion of axiomatic systems assumes the notions of effective property and effective rule. In fact, what we really want to know is if a given sequence of symbols is an axiom or if it is not a correct application of a rule. Effective property and effective rule are subject to the recursive function theory. Therefore, the application of this theory to axiomatic systems leads to the demonstration of important results.

The present work, deals with the application of recursive function theory to the logical systems elementar arythmetic, in order to demonstrate that a set of false statments constitutes an un decidable theory and is not axiomatic.

Downloads

Download data is not yet available.

References

CENTENARO, I. F. Teoria das Funções Recursivas e Aplicação à Lógica. Campinas/SP. 1977. (Tese de Mestrado-UNICAMP).

CHURCH, A. An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics, 58: 345-363, 1963.

DAVIS, M. Computability & Unsolvability. MacGraw-Hill Book Company, New York, 1958.

GÜDEL, K. Über die länge von Berweiser. Ergebnisse eines mathematisches Kolloquium , Helf 4: 34-38, 1936.

MYHILL, J. Creative Sets. Zeitschrift Matematische Logik und Grundlangue der Mathematik, 1 : 97-108, 1955.

POST, E.L. Finite combinatory processes-formulation, I. The Journal of symbolic Logic, 1: 103-105, 1936.

ROGERS, H. Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York, 1967.

Published

1984-12-11

How to Cite

Centenaro, I. F., & Centenaro, M. H. F. (1984). Recursive function theory applied to the logical system elementar arythmetic. Ciência E Natura, 6(6), 23–30. https://doi.org/10.5902/2179460X25032