SOLUTIONS FOR THE NAVIER-STOKES EQUATIONS IN TRIDIMENSIONAL THIN DOMAINS

Authors

  • Felipe Crivellaro Minuzzi Universidade Federal de Santa Maria
  • João Paulo Lukaszczyk Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X14635

Keywords:

Navier-Stokes equations. Thin domains. Existence of solutions.

Abstract

The classical form of the Navier-Stokes equations system, which is derived from the principle of conservation of mass and momentum, describes the motion of a homogeneous fluid subject to a field of external forces. In this work, we develop a study to find the maximal interval of existence of solutions in time to the Navier-Stokes equations in a three dimensional thin domain, i.e., Ω = ω × (0, ∈), where ω ⊂ R² e ∈  ∈ (0, 1), considering different combinations of boundary conditions.

Downloads

Download data is not yet available.

Author Biographies

Felipe Crivellaro Minuzzi, Universidade Federal de Santa Maria

Acadêmico do Mestrado em Matemática da UFSM

João Paulo Lukaszczyk, Universidade Federal de Santa Maria

Professor Associado do Departamento de Matemática -UFSM

Published

2015-01-20

How to Cite

Minuzzi, F. C., & Lukaszczyk, J. P. (2015). SOLUTIONS FOR THE NAVIER-STOKES EQUATIONS IN TRIDIMENSIONAL THIN DOMAINS. Ciência E Natura, 37(1), 23–44. https://doi.org/10.5902/2179460X14635

Issue

Section

Mathematics