On a level-set regularization strategy for the identification of a piecewise constant rigidity coefficient in a beam

Authors

DOI:

https://doi.org/10.5902/2179460X90522

Keywords:

Level-set regularization, Piecewise constant stiffness coefficient, Beams, Euler-Bernoulli

Abstract

In this work, we analyze a level set regularization strategy to identify the constant piecewise stiffness coefficient in a static Euler-Bernoulli beam, based on indirect deflection measurements. The theoretical results presented are illustrated by some numerical simulations.

Downloads

Download data is not yet available.

Author Biographies

Elisa Ferreira Medeiros, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul

PhD in progress in Computational Modeling.

Adriano De Cezaro, Universidade Federal do Rio Grande

Doctor in Mathematics.

Fabiana Travessini De Cezaro, Universidade Federal do Rio Grande

Doctor in Mathematics.

References

Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media.

Cezaro, A., Leit˜ao, A., & Tai, X.-C. (2009). On multiple level-set regularization methods for inverse problems. Inverse Problems, 25(3), 035004. Retrived from https://iopscience.iop.org/article/10.1088/0266–5611/25/3/035004. doi: 10.1088/0266–5611/25/3/035004.

Cezaro, A., Leit˜ao, A., & Tai, X.-C. (2013). On piecewise constant level-set (pcls) methods for the identication of discontinuous parameters in ill-posed problems. Inverse Problems, 29(1), 015003.

Evans, L. & Gariepy, R. (1992). Measure theory and fine properties of functions. (Studies in Advanced Mathematics). Boca Raton: CRC Press.

Gladwell, G. M. & Morassi, A. (2010). A family of isospectral Euler-Bernoulli beams. Inverse problems, 26(3), 035006.

Hibbeler, R. (2006). Resistˆencia dos Materiais. (7th ed.). Pearson Prentice Hall.

Kaltenbacher, B., Neubauer, A., & Scherzer, O. (2008). Iterative regularization methods for nonlinear ill-posed problems. (6th vol. Radon Series on Computational and Applied Mathematics). Berlin: Walter de Gruyter GmbH & Co. KG.

Kawano, A. (2017). Uniqueness in the determination of unknown coefficients of an Euler-Bernoulli beam equation with observation in an arbitrary small interval of time. Journal of Mathematical Analysis and Applications, 452(1), 351–360.

Kirsh, A. (2011). An introduction to the mathematical theory of inverse problems, volume (120th vol.). Springer Science & Business Media.

Lerma, A. & Hinestroza, D. (2017). Coefficient identification in the Euler-Bernoulli equation using regularization methods. Applied Math. Modelling, 41, 223–235.

Lesnic, D., Elliott, L., & Ingham, D. (1999). Analysis of coefficient identification problems associated to the inverse Euler-Bernoulli beam theory. IMA Journal of Applied Mathematics, 62(2), 101–116.

Marinov, T., Marinova, R., & Vatsala, A. (2015). Coefficient identification in Euler-Bernoulli equation from over-posed data. Neural, Parallel, and Scientific Computations, 23(2), 193–218.

Marinov, T. & Vatsala, A. (2008). Inverse problem for coefficient identification in the Euler-Bernoulli equation. Computers & Mathematics with Applications, 56(2), 400–410.

Medeiros, E. (2019). Identificação do coeficiente de rigidez no modelo de Euler-Bernoulli para vigas. (Master’s thesis). Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.

Medeiros, E., Cezaro, A., & Cezaro, F. T. (2023). Uniqueness and regularization in the flexural stiffness coefficient identification problem for a statically determined Euler–Bernoulli beam. Communications in Nonlinear Science and Numerical Simulation, 126, 107486.

Medeiros, E., Cezaro, A., & Travessini de Cezaro, F. (2022). M´etodos iterativos de regularização para identificação do coeficiente de rigidez na equac¸ ˜ao de Euler-Bernoulli para vigas. Trends in Computational and Applied Mathematics, 23(2), 363–382.

Downloads

Published

2025-02-03

How to Cite

Medeiros, E. F., Cezaro, A. D., & Cezaro, F. T. D. (2025). On a level-set regularization strategy for the identification of a piecewise constant rigidity coefficient in a beam. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90522