Synthesis and characterization of nanofibers and nanocrystals of cellulose from Guadua weberbaueri
DOI:
https://doi.org/10.5902/2179460X85624Keywords:
Guadua weberbaueri, Cellulose nanofibers and nanocrystals, Structural reinforcement, Sustainability, AmazonAbstract
The species Guadua weberbaeuri, popularly known as bamboo or taboca, and abundantly located in the region of Acre-Brazil, had its potential application as reinforcement to cementitious composites, in civil construction, explored through characterizations. For this purpose, preliminary steps are carried out, until the preparation of cellulose nanofibers was obtained from the bamboo pseudostem through various processes such as milling, sieving, pre-treatment, bleaching, elimination of hemicellulose and lignin to obtain cellulose, acid hydrolysis of cellulose to obtain crystalline cellulose nanofibers (NCC). The NCC were characterized by infrared spectroscopy, thermogravimetric and thermal differential analyses, X-ray diffraction, X-ray fluorescence, dynamic light scattering and fiber and cellulose contents. The results indicated predominantly crystalline nanomaterials, with thermal stability up to 300 °C, with carbonaceous bonds and an abundance of sodium oxides and silica, indicating a potential for incorporation into cementitious composites. This perspective, to be studied in later stages by the authors, will aim to bring the fields of sustainability, civil construction and nanotechnology closer together.
Downloads
References
Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., & Takzare, Z. (2014). Preparation and characterization of modified celulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing, 35, 73–79. DOI: https://doi.org/10.1016/j.polymertesting.2014.03.002
Ahmad, M. I., Farooq, S., & Zhang, H. (2022). Recent advances in the fabrication, health benefits, and food applications of bamboo cellulose. Food Hydrocolloids for Health, 2, 100103. DOI: https://doi.org/10.1016/j.fhfh.2022.100103
Alvarenga, B. L., Junior, L. M., Faria, D. L., Dias , M. C., Alvarenga, V. L., Mendes, L. M., & Junior, J. B. G. (2022). Physical and mechanical evaluation of gypsum composites reinforced with Bambusa tuldoides fiber. Matéria (Rio de Janeiro), 27(2), p. e13187. DOI: https://doi.org/10.1590/s1517-707620220002.1387
Auersvaldt, B. L., Lay, L. A., & Miranda, T. L. (2019) Incorporation of bamboo plant fibers into concrete to replace synthetic fibers. In: Anais IX Congresso Brasileiro de Engenharia de Produção.
Barbosa, A. M., Rebelo, V. S. M., Martorano, L. G., & Giacon, V. M. (2019) Characterization of açaí particles aiming at their potential use in civil construction. Matéria (Rio de Janeiro), v. 24, n. 3, p. e12435, 2019. DOI: https://doi.org/10.1590/s1517-707620190003.0750
Bilcati, G. K., Costa, M. R. M. M., & Paulino, R. S. (2022). Effect of multi-scale crystalline cellulose-microcellulose fiber reinforcement on the hydration phase of Portland cement pastes. Matéria (Rio de Janeiro), 27(4), e20220220. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0220
Botaro, V. R., Santos, C. G., & Oliveira, V. A. (2009). Superabsorbent hydrogels based on cellulose acetate modified by dianhydride 3,3', 4,4' tetracarboxylic benzophenone (BTDA): synthesis, characterization and physicochemical studies of absorption. Polímeros, 19(4), 278–284. DOI: https://doi.org/10.1590/S0104-14282009000400006
Brito, F. M. S., Paes, J. B., Oliveira, J. T. S., Arantes, M. D. C., & Neto, H. F. (2015). Anatomical and physical characterization of giant bamboo (Dendrocalamus giganteus Munro). Floresta e Ambiente, 22(4), 559-566. DOI: https://doi.org/10.1590/2179-8087.033913
Campos, C. I., Silva, A. P. S., Aquino, V. B. M., Christoforo, A. L., & Lahr, F. A. (2023). RAnalysis of the effect of incorporating ZnO nanoparticles on the physical and mechanical properties of MDF panels. Ambiente Construído, 23(1), 171–182, jan. DOI: https://doi.org/10.1590/s1678-86212023000100656
Cesca, K., Netto, M. S., Ely, V. L., Dotto, G. L., Foletto, E. L., & Hotza, D. (2020). Synthesis of spherical bacterial nanocellulose as a potential silver adsorption agent for antimicrobial purposes. Cellulose Chem. Technol., 54 (3-4), 285-290. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2020.54.30
Correia, V. C. (2011). Production and characterization of organosolve bamboo pulp for reinforcement of cementitious matrices. Dissertação (Zootecnia). Universidade de São Paulo, Pirassuninga - SP.
Costa, J. F., Garcia, M. C. F., Apati, G. P., Barud, H. S., Schneider, A. L. S., & Pezzin, A. P. T. (2017). Bacterial cellulose nanocrystals: from obtaining, under different hydrolysis conditions, to incorporation as reinforcement in poly(L-lactic acid). Matéria (Rio de Janeiro), 22. DOI: https://doi.org/10.1590/s1517-707620170005.0253
Dias Júnior, A. F., Oliveira, R. N., Deglise, X., Souza, N. D., & Brito, J. O. (2019). Infrared spectroscopy analysis on charcoal generated by the pyrolysis of Corymbia citriodora wood. Matéria (Rio de Janeiro), v. 24, n. 3, p. e12387. DOI: https://doi.org/10.1590/s1517-707620190003.0700
Dongre, M., & Suryawashi, V. B. (2021). Analysis of cellulose based nanocomposites & potential applications. Materials Today: Proceedings 45, 3476–3482. DOI: https://doi.org/10.1016/j.matpr.2020.12.943
Goetz, N. M., Kunst, S. R., Morisso, F. D. P., Oliveira, C. T., & Machado, T. C. (2022). Study of the efficiency of using bamboo as a biosorbent in the removal of methylene blue. Matéria (Rio de Janeiro), 27(3), e20220065. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0065
Guo, X., Wu, Y., & Xie, X. (2017). Water vapor sorption properties of cellulose nanocrystals and nanofbers using dynamic vapor sorption apparatus. Scientific Reports, 7, 14207, DOI:10.1038/s41598-017-14664-7. DOI: https://doi.org/10.1038/s41598-017-14664-7
Hasan, I., & Walia, S. (2021). A review on properties and challenges associated with celulose nanocrystals and nanocomposites. Materials Today: Proceedings 45, 3365–3369. DOI: https://doi.org/10.1016/j.matpr.2020.12.676
Jesus, L. C. C., Luz, S. M., Leão, R. M., Zattera, A. J., & Amico, S. C. (2019). Thermal behavior of recycled polystyrene composites reinforced with sugarcane bagasse cellulose. Matéria (Rio de Janeiro), v. 24, n. 3, p. e12421. DOI: https://doi.org/10.1590/s1517-707620190003.0736
Lima, W. A. S., Souza, A. C. A., Brabo, D. R., Junior, J. L. L., & Dias, C. G. B. T. (2022). Development and characterization of a polymeric composite from murumuru endocarp (Astrocaryum murumuru Mart.) and recycled polyolefins. Matéria (Rio de Janeiro), 27(4), e20220160. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0160
Lira, Y. C., Mendonça, A. M. G. D., Alves, M. H. N., Costa, D. B., & Filho, M. B. C. (2015). Analysis of the alkaline equivalent of oily residue from the petroleum E&P industry and Portland cement for use in concrete. In: Anais I Congresso Nacional de Engenharia de Petróleo, Gás Natural e Biocombustíveis.
Machado, B. A. S., Reis, J. H. O., Silva, J. B. S., Cruz, L. S., Nunes, I. L., Pereira, F. V., & Druzian, J. I. (2014). Obtaining nanocellulose from green coconut fiber and incorporating it into biodegradable starch films plasticized with glycerol. Quim. Nova, 37(8), 1275-1282. DOI: https://doi.org/10.5935/0100-4042.20140220
Machado, M. C., Corrêa, M. N., Kozloski, G. V., Oliveira, L., Brauner, C. C., Barbosa, A. A., Cardoso, K. B., & Pino, F. A. B. (2022). Sweet potato (Ipomea batatas) feed affects intake, digestibility and nitrogen retention of ovine fed with ryegrass hay (Lolium multiflorum Lam. Arq. Bras. Med. Vet. Zootec., 74(1), 169-175. DOI: https://doi.org/10.1590/1678-4162-12309
Medeiros, J. L. G., & Morais, C. R. S. (2020). Application of thermoanalytical techniques (TGA/DTA) to evaluate the thermal behavior of clay samples to obtain pozzolans. Divulgação científica e tecnológica do IFPB. 50.
Mendes, A. R., Vanderlei, R. D., & Basso, M. A. (2023). Analysis of the crystalline nanocellulose dispersion process for the production of cementitious composites. Ambiente Construído, 23(1), 183–196. DOI: https://doi.org/10.1590/s1678-86212023000100657
Miranda, E. H.N., Silva, G.A., Gomes, D.A.C., Silveira, M. N. L., Vitorino, F. C., & Ferreia, S. F. (2022). Effect of different wood and bamboo species on the hydration of Portland cement-based matrices. Matéria (Rio de Janeiro), 27(4), e20220194. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0194
Morais, C. D. N. (2021). Production and use of cellulose nanofibers from taboca (Guadua spp) to reinforce cementitious composites. Dissertação (Ciência, Inovação e Tecnologia). Universidade Federal do Acre, Rio Branco – AC.
Moura, C. A. M., Resende, J. A. L. C., Souza, K. C. (2023). Characterization of Portland cement pastes with addition of silica aiming the immobilization of Cr(VI). Ambiente Construído, 23(3), 245–261. DOI: https://doi.org/10.1590/s1678-86212023000300685
Nunes, M. R. S., Ramos, D. P., Morais, C. D. N., Sena, A. E. C., Ramos, A. L. R., Rodriguez, F. R., & Faria, F. S. E. D. V. (2021). Preparation and characterization of Guadua weberbauri bamboo pulp: technology. SAJEBTT, Rio Branco, UFAC, 8(2), 217-232.
Nyong, A. E., Udoh, G., Joachim, J. A. A., Nsi, E. W., & Rohatgi, P. K. (2022). Study of the orphological Changes and the Growth Kinetics of the Oxides Formed by the High Temperature Oxidation of Cu-32.02% Zn-2.30% Pb Brass. Materials Research. DOI: https://doi.org/10.1590/1980-5373-MR-2021-0173. 25:e20210173. DOI: https://doi.org/10.1590/1980-5373-mr-2021-0173
Orrabalis, C., Pampilo, L. G., Calderón-Londoño, C., Trinidad, M., & García, R. M. (2019). Characterization of Nanocellulose Obtained from Cereus Forbesii (a South American cactus). Materials Research, 22(6), e20190243. DOI: https://doi.org/10.1590/1980-5373-mr-2019-0243
Pego, M. F. F., Bianchi, M. L., & Veiga, T. R. L. A. (2019). Evaluation of the properties of sugarcane and bamboo bagasse for pulp and paper production. Rev. Cienc. Agrar., 62.
Pereira, A. L. S., Cordeiro, E. M. S., Nascimento, D. M., Morais, J. P. S., Sousa, M. S. M., & Rosa, M. F. (2014). Extraction and characterization of nanocellulose from banana pseudostem fibers. In: Anais V Congresso Norte-Nordeste de Pesquisa e Inovação.
Pereira, M. A. R. (2012). Bamboo project: introduction of species, management, characterization and applications. Tese (Design e Construção com Bambu). Universidade Estadual Paulista Julio de Mesquita Filho, Bauru - SP.
Pescarolo, A., Silva, S. H. L., Pinto, M. C. C., & Costa, M. R. M. M. (2022). The influence of cellulose microfibers on fresh state of mortars. Ambiente Construído, 22(1), 179–190. DOI: https://doi.org/10.1590/s1678-86212022000100586
Rambo, M. K. D., Rambo, M. C. D., Almeida, K. J. C. R., & Alexandre, G. P. (2015) Study of Thermogravimetric Analysis of Different Lignocellulosic Biomasses Using Principal Component Analysis. Ciência e Natura, [S. l.], 37(3), 862–868. DOI: 10.5902/2179460X18332. Retrieved from: https://periodicos.ufsm.br/cienciaenatura/article/view/18332. DOI: https://doi.org/10.5902/2179460X18332
Ribeiro, F. W. M. (2016). Production of biocomposites from polybenzoxazine matrix derived from LCC reinforced with bamboo fibers. Dissertação (Química Orgânica). Universidade Federal do Ceará, Fortaleza - CE.
Rodrigues, S. D. S., Sousa, J. G. G., & Olivier, N. C. (2022). Effects of accelerated aging on beta gypsum with the addition of water-repellent putty. Ambiente Construído, 22(4), 355–369. DOI: https://doi.org/10.1590/s1678-86212022000400644
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Ortsb, W.J., & Imam, S.H. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81, 831-92. DOI: https://doi.org/10.1016/j.carbpol.2010.01.059
Samir, M. A. S. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612-626. DOI: https://doi.org/10.1021/bm0493685
Sasamori, A. M., Pires, P. G. P., Lemos, A. L., & Santana, R. M. C. (2022). Influence of lignin type on the characterization of natural fiber polymer composites. Ciência e Natura, [S. l.], 44, e14. DOI: 10.5902/2179460X68827. DOI: https://doi.org/10.5902/2179460X68827
Senna, A. M., Menezes, A. J. &, Botaro, V. R. (2013). Study of crosslink density in superabsorbent gels obtained from cellulose acetate. Polímeros, 23(1), 59–64. DOI: https://doi.org/10.1590/S0104-14282012005000078
Silvestro, L., Ruviaro, A. S., Lima, G. T. S., Matos, P. R., Rodriguez, E., & Gleize, P. J. P. (2023). Sonicating polycarboxylate-based superplasticizer for application in cementitious matrix. Revista IBRACON de Estruturas e Materiais, 16(2), e16205. DOI: https://doi.org/10.1590/s1983-41952023000200005
Teixeira, E. M., Olveira, C. R., Mattoso, L. H. C., Corrêa, A. C., & Paladin, P. D. (2010). Cotton nanofibers obtained under different conditions of acid hydrolysis. Polímeros, 20(4), 264–268. DOI: https://doi.org/10.1590/S0104-14282010005000046
Thipchai, P., Punyodom, W., Jantanasakulwong, K., Thanakkasaranee, S., Hinmo, S., Pratinthong, K., Kasi, G., & Rachtanapun, P. (2023). Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film. Polymers 15, 2622. https://doi.org/10.3390/polym15122622. DOI: https://doi.org/10.3390/polym15122622
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysacchrides in relation to animal nutrition. Jounal Dairy Scientific, 74, p.3583-3597. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Yu, M., Yang, R., Huang, L., Cao, X., Yang, F., & Liu, D. (2012). PREPARATION AND CHARACTERIZATION OF BAMBOO NANOCRYSTALLINE CELLULOSE. BioResources 7(2), 1802-1812. DOI: https://doi.org/10.15376/biores.7.2.1802-1812
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.