Transitional Markov Chain Monte Carlo for estimation of heat transfer coefficients in a microchannel heat sink

Authors

DOI:

https://doi.org/10.5902/2179460X84238

Keywords:

Conjugate heat transfer, Internal convection, Microchannels, Inverse problems, Bayesian inference, Transitional Monte Carlo Markov Chain Method

Abstract

This work addresses a Bayesian methodology to solve an inverse heat transfer problem in a microchannel heat sink. The direct problem involves calculating the temperature profile on the plate, as well as the temperature of the fluid flowing in the microchannel, through a simplified mathematical model of the physical system in question. The direct problem was numerically solved using the explicit finite difference method. The inverse problem in question consists of estimating the convective heat transfer coefficients of the system within the Bayesian framework. The Transitional Markov Chain Monte Carlo was used to sample the posterior probability density function of the model parameters. The proposed methodology was evaluated from numerical simulations involving temperature data corrupted with additive noise and different models for the estimated heat transfer coefficients. Numerical analyzes are also presented considering observed temperature data generated from a complete model implemented in software COMSOL Multiphysics. The presented results show that the proposed methodology was able to estimate the heat transfer coefficients in the different considered scenarios.

Downloads

Download data is not yet available.

Author Biographies

Lucas da Silva Asth, Universidade do Estado do Rio de Janeiro

Graduate Student of Computational Modelling at Instituto Politécnico - UERJ.

Leonardo Tavares Stutz, Universidade do Estado do Rio de Janeiro

Associate Professor at Instituto Politécnico - UERJ.

Diego Campos Knupp, Universidade do Estado do Rio de Janeiro

PhD (2013) in Mechanical Engineering from COPPE/UFRJ.

Luiz Alberto da Silva Abreu, Universidade do Estado do Rio de Janeiro

Assistant Professor at Instituto Politécnico - UERJ.

Bruno Carlos Lugão, Universidade do Estado do Rio de Janeiro

Doctor of Sciences in Computational Modelling at Instituto Politécnico - UERJ. Currently works at Corpo de Bombeiros Militares do Estado do Rio de Janeiro - Secretaria de Estado de Defesa Civil.

References

Baz´an, F., Bedin, L., & Bozzoli, F. (2019). New methods for numerical estimation of convective heat transfer coefficient in circular ducts. International Journal of Thermal Sciences, 139:387–402. DOI: https://doi.org/10.1016/j.ijthermalsci.2019.02.025.

Betz, W., Papaioannou, I., & Straub, D. (2016). Transitional markov chain monte carlo: observations and improvements. Journal of Engineering Mechanics, 142(5):04016016. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001066.

Bokar, J. & Ozisik, M. (1995). An inverse analysis for estimating the time-varying inlet temperature in laminar flow inside a parallel plate duct. International journal of heat and mass transfer, 38(1):39–45. DOI: https://doi.org/10.1016/0017-9310(94)00146-m.

Chen, K., Cotta, R. M., Naveira-Cotta, C. P., & Pontes, P. C. (2022). Heat transfer analysis of compressible laminar flow in a parallel-plates channel via integral transforms. International Communications in Heat and Mass Transfer, 138:106368. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106368.

Ching, J. & Chen, Y.-C. (2007). Transitional markov chain monte carlo method for bayesian model updating, model class selection, and model averaging. Journal of engineering mechanics, 133(7):816–832. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816).

Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical heat and fluid flow in microchannels and microsystems, volume 164. Springer.

Cotta, R. M. & Mikhailov, M. D. (1997). Heat conduction: lumped analysis, integral transforms, symbolic computation. Wiley Chichester.

Kaipio, J. & Somersalo, E. (2006). Statistical and computational inverse problems, volume 160. Springer Science & Business Media.

Kennedy, M. & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63:425—-464.

Mercone, S., Fr´esard, R., Caignaert, V., Martin, C., Saurel, D., Simon, C., Andr´e, G., Monod, P., & Fauth, F. (2005). Nonlinear effects and joule heating in i-v curves in manganites. Journal of applied physics, 98(2):023911. DOI: https://doi.org/10.1063/1.1993750.

Mota, C. A., Orlande, H. R., De Carvalho, M. O. M., Kolehmainen, V., & Kaipio, J. P. (2010). Bayesian estimation of temperature-dependent thermophysical properties and transient boundary heat flux. Heat Transfer Engineering, 31(7):570–580. DOI: https://doi.org/10.1080/01457630903425635.

Ozisik, M. (1994). Finite Difference Methods in Heat Transfer CRC.

Ozisik, M. N. & Orlande, H. R. (2021). Inverse heat transfer: fundamentals and applications. CRC press.

Parwani, A. K., Talukdar, P., & Subbarao, P. (2012). Estimation of inlet temperature of a developing fluid flow in a parallel plate channel. International journal of thermal sciences, 57:126–134. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.02.009.

Pletcher, R. H., Tannehill, J. C., & Anderson, D. (2012). Computational fluid mechanics and heat transfer. CRC press.

Ramancha, M., Conte, J., & Parno, M. (2022). Accounting for model form uncertainty in bayesian calibration of linear dynamic systems. Mechanical Systems and Signal Processing, 171:108871.

Razzaghi, H., Kowsary, F., & Ashjaee, M. (2019). Derivation and application of the adjoint method for estimation of both spatially and temporally varying convective heat transfer coefficient. Applied Thermal Engineering, 154:63–75. DOI: https://doi.org/10.1016/j.applthermaleng.2019.03.068.

Tuckerman, D. B. & Pease, R. F. W. (1981). High-performance heat sinking for vlsi. IEEE Electron device letters, 2(5):126–129. DOI: https://doi.org/10.1109/edl.1981.25367.

Yarin, L., Mosyak, A., & Hetsroni, G. (2009). Velocity field and pressure drop in single-phase flows. Fluid Flow, Heat Transfer and Boiling in Micro-Channels, pages 103–144. DOI: https://doi.org/10.1007/978-3-540-78755-63.

Published

2025-01-29

How to Cite

Asth, L. da S., Stutz, L. T., Knupp, D. C., Abreu, L. A. da S., & Lugão, B. C. (2025). Transitional Markov Chain Monte Carlo for estimation of heat transfer coefficients in a microchannel heat sink. Ciência E Natura, 46. https://doi.org/10.5902/2179460X84238

Most read articles by the same author(s)