Optimization of reinforced concrete structures using population-based metaheuristic algorithms

Authors

DOI:

https://doi.org/10.5902/2179460X74927

Keywords:

Constrained Optimization, Evolutionary algorithms, Reinforced concrete

Abstract

For many industrial activities, ideal projects are achieved by comparing the solution of alternative projects with those already executed. The feasibility of solutions plays an important role in these activities. For example, the underlying objective (cost, profit, etc.) estimated for each project solution is calculated and the best solution is adopted. This is the usual procedure followed by many constructors due to time and resource limitations. However, in many cases, this method is followed simply by a lack of knowledge of existing optimization procedures. In this context, a comparative study of population-based metaheuristic algorithms applied to a case study of a reinforced concrete beam design reinforced with a polymer matrix with carbon fibers will be presented. Evolutionary algorithms have the ability to determine the optimal values of the design variables without disregarding the restrictions on ACI-318 and ACI-440 standards while minimizing the reinforcement area for each beam (cost). The comparative study shows that not all presented algorithms violated design constraints. In addition, it can be said that the values found for the design variables present a low dispersion around the mean value of the objective function.

Downloads

Download data is not yet available.

Author Biographies

Rodrigo Reis Amaral, Federal University of Rio Grande do Sul

Possui Graduação em Engenharia Civil pela Universidade Católica de Pelotas, Mestrado em Modelagem Computacional pela Universidade Federal do Rio Grande. Atualmente é Doutorando em Engenharia pelo Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Rio Grande do Sul. Seu principal interesse está na análise de estruturas de concreto armado, otimização topológica, confiabilidade estrutural e mecânica computacional. Tem experiência na área de Engenharia Civil, com ênfase em Mecânica das Estruturas.

Lamartini Fontana Barazzutti, Federal University of Rio Grande do Sul

Possui graduação em Engenharia Mecânica pela Universidade do Vale do Rio dos Sinos. Atualmente é mestrando de Engenharia Mecânica na Universidade Federal do Rio Grande do Sul. Tem experiência na área de Engenharia Mecânica, com ênfase em cálculo estrutural utilizando software de elementos finitos, atuando principalmente nos seguintes temas: CAE, simulação computacional, otimização estrutural, identificação de modelo, detecção de dano, manufatura aditiva.

Herbert Martins Gomes, Federal University of Rio Grande do Sul

Possui graduação em Engenharia Civil pela UFPB, Mestrado em Eng. Civil pela UFRGS e Doutorado em Eng. Civil pela UFRGS. Realizou estágio no Laboratório de Mecânica Experimental e Novos Materiais na UP, Portugal. Realizou Pós Doutorado na Universidade de Liverpool no Institute for Risk and Uncertainty do Dep. Eng. Mecânica (Inglaterra). Atualmente é Professor Titular da UFRGS. Tem experiência na área de Engenharia Mecânica/Civil, com ênfase em Mecânica dos Sólidos/Estruturas, tendo atuado e atuando principalmente nos seguintes temas: Elementos Finitos, Confiabilidade Estrutural, Algoritmos Heurísticos em Engenharia, Medições e Instrumentação Mecânica e Concreto Armado.

References

AKIN, A.; SAKA, M.P. Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions. Computers & Structures, 147, 79-95, 2015.

ARORA, J. S. Introduction to Optimum Design. Academic Press, 2017. https://doi.org/10.1016/C2013-0-15344-5

ATASHPAZ-GARGARI, E.; LUCAS, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, 4661-4667, 2007.

CERANIC, B.; FRYER, C.; BAINES, R. W. An application of simulated annealing to the optimum design of reinforced concrete retaining structures. Computers & Structures, 79, 1569-1581, 2001.

FERREIRA, C. C.; BARROS, M. H. F. M.; BARROS, A. F. M. Optimal design of reinforced concrete T-sections in bending. Engineering Structures, 25, 951-964, 2003.

KARABOGA, D. An idea based on honey bee swarm for numerical optimization. Technical Report, Erciyes University, 2005.

KAVEH, A., TALATAHARI, S. Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures, 88, 1220–1229, 2010.

KAVEH, A.; BAKHSHPOORI, T. Metaheuristics: Outlines, MATLAB Codes and Examples. Springer, 2019. https://doi.org/10.1007/978-3-030-04067-3

KAVEH, A.; DADRAS, A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw, 110,69–84, 2017.

KAVEH, A.; IZADIGARD, R. A.; MOTTAGHI, L. Optimal design of planar RC frames considering CO2 emissions using

ECBO, EVPS and PSO metaheuristic algorithms. Journal of Building Engineering, 28, 2020.

KAYABEKIR, A. E.; BEKDAS, G.; NIGDELI, S. M. Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures: Emerging Research and Opportunities, 2020. http://dx.doi.org/10.4018/978-1-7998-2664-4

KAYABEKIR, A. E.; SAYIN, B.; BEKDAS, G.; NIGDELI, S. M. The factor of optimum angle of carbon fiber reinforced polymers. In 4th International Conference on Engineering and Natural Sciences (ICENS 2018), 2018.

LI, M.; WONG, B. C. L.; LIU, Y.; CHAN, C. M.; GAN, V. J. L. CHENG, J. G. P. DfMA-oriented design optimization for steel reinforcement using BIM and hybrid metaheuristic algorithms. Journal of Building Engineering, 44, 2021.

MERGOS, P. Optimum design of 3D reinforced concrete building frames with the flower pollination algorithm. Journal of Building Engineering, 44, 2021.

NAYAK, S. Fundamentals Of Optimization Techniques With Algorithms. Elsevier, 2020. https://doi.org/10.1016/C2019-1-02539-9

RAO, R. V.; SAVSANI, V. J.; VAKHARIA, D. P. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des, 43 (3), 303–315, 2011.

RAO, S. S. Engineering Optimization Theory and Practice. Wiley, 2020. http://dx.doi.org/10.1002/9781119454816

YANG, X. S. Nature-Inspired Optimization Algorithms. Elsevier, 2014. https://doi.org/10.1016/C2013-0-01368-0

YANG, X. S. Nature-Inspired Computation and Swarm Intelligence Algorithms, Theory and Applications. Elsevier, 2020. https://doi.org/10.1016/C2019-0-00628-0

YANG, X. S.; GANDOMI, A. H.; TALATAHARI, S.; ALAVI, A. H. Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, 2012. https://doi.org/10.1016/C2011-0-07801-8

Downloads

Published

2023-12-01

How to Cite

Amaral, R. R., Barazzutti, L. F., & Gomes, H. M. (2023). Optimization of reinforced concrete structures using population-based metaheuristic algorithms. Ciência E Natura, 45(esp. 3), e74927. https://doi.org/10.5902/2179460X74927