Potential antitumor effect of organochalcogenyl-benzoates in glioma cells

Authors

DOI:

https://doi.org/10.5902/2179460X74392

Keywords:

Cancer, Glioblastoma, Selenium, Organic compounds

Abstract

In the domain of brain malignancies, glioma, in particular the World Health Organization (WHO) Grade IV Glioblastoma, persists as having one of the worst prognoses in modern medicine. Despite the protocol leading to the convention of surgery with chemo-radiotherapy as the mainstay of treatment, mean survival rarely exceeds 18 months. In this work, we tested the antiglioma potential of three organochalcogenyl-benzoates containing an organoselenium group in their structure, obtained by chemical synthesis: 3-(phenylselanyl)prop-2-yn-1-yl nicotinate, 3-(phenylselanyl)benzoate)prop-2-yn-1-yl, and 3-((4-fluorophenyl)selanyl)prop-2-yn-1-yl benzoate. The tests were performed on a C6 rat glioblastoma cell line, which was treated with the compounds for different times (24, 48, and 72 hours) and concentrations (10-100 µM). After the treatments, MTT assays and cell counts were performed. All compounds showed cytotoxic effects, decreasing cell viability and the number of cells. For compound 3-((4-fluorophenyl)selanyl)prop-2-in-1-yl benzoate—which showed the most pronounced cytotoxic effects— analyses of cumulative population doubling, clonogenic ability, induction potential of senescence, and lipid peroxidation were performed. The compound was only able to induce a significant increase in lipid peroxidation, with no effect over the other parameters studied. The results presented here are unprecedented and promising, introducing new compounds with antitumor potential for glioma therapy.

Downloads

Download data is not yet available.

Author Biographies

Lauren Lúcia Zamin, Universidade Federal da Fronteira Sul

PhD in Cellular and Molecular Biology from the Federal University of Rio Grande do Sul.

Elisa da Silva, Universidade Federal da Fronteira Sul

Master's degree in Environment and Sustainable Technologies from the Federal University of Fronteira Sul.

Benhur Godoi, Universidade Federal da Fronteira Sul

PhD in Chemistry from the Federal University of Santa Maria.

References

Agani, C. A. J. O. (2018). Estabelecimento de linhagem de glioblastoma humano resistente ao quimioterápico temozolomide. [Trabalho de conclusão de curso, Universidade Federal do Rio Grande do Sul]. http://hdl.handle.net/10183/206854.

Bartusik-Aebisher, D., Chrzanowski, G., Bober, Z., & Aebisher, D. (2021). An analytical study of Trastuzumab-dendrimer-fluorine drug delivery system in breast cancer therapy in vitro. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 133, 11105, 2021. https://doi.org/10.1016/j.biopha.2020.111053.

Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., & Alimonti, A. (2019). Cellular senescence: aging, cancer, and injury. Physiological reviews, 99(2), 1047-1078, 2019. http://doi.org/10.1152/physrev.00020.2018.

Davis, M. E. (2016). Glioblastoma: overview of disease and treatment. Clinical journal of oncology nursing, 20(5 Suppl), S2-S8. http://doi.org/10.1188/16.CJON.S1.2-8.

Diasio, R. B., & Harris, B. E. (1989). Clinical pharmacology of 5-fluorouracil. Clinical Pharmacokinetics, 16(4), 215–237. http://doi.org/10.2165/00003088-198916040-00002.

Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., … & Campisi, J. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363–9367. http://doi.org/10.1073/pnas.92.20.9363.

Ferreira, Á. L. G. (2013). Novos Processos de Fluoração em Química Farmacêutica Industrial. [Dissertação de Mestrado em Química Farmacêutica Industrial, Universidade de Coimbra]. https://hdl.handle.net/10316/37508

Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & Van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature protocols, 1(5), 2315–2319. http://doi.org/10.1038/nprot.2006.339.

Giles, N. M., Giles, G. I., Gutowski, N. J., & Jacob, C. (2003). Redox catalysts as sensitizers towards oxidative stress. FEBS letters, 535(1-3), 179-182. http://doi.org/10.1016/S0014-5793(02)03890-5.

Giles, N. M., Giles, G. I., Holley, J. E., Gutowski, N. J., & Jacob, C. (2003). Targeting oxidative stress-related diseases: organochalcogen catalysts as redox sensitizers. Biochemical pharmacolpgy, 66(10), 2021–2028. http://doi.org/10.1016/S0006-2952(03)00544-6.

Gritzenco, F. (2020). Síntese de benzoatos 3-(organocalcogenil)prop-2-in-1-ílicos catalisada por cobre: aplicação sintética e potencial farmacológico. [Dissertação de mestrado (Programa de Pós-graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul]. https://rd.uffs.edu.br/handle/prefix/3972.

Gritzenco, F., Kazmierczak, J. C., Anjos, T., Sperança, A., Peixoto, M. L. B., Ledebuhr, K. N. B., Bruning, C.A., ... & Godoi, B. (2021). Base-Free synthesis and synthetic applications of novel 3-(Organochalcogenyl)prop-2-yn-1-yl esters: promising anticancer agents. Synthesis, 53(15), 2676-2688. http://doi.org/10.1055/a-1477-6470.

Hayflick, L. The limited in vitro lifetime of human diploid cell strains. (1965). Experimental Cell Research, 37, 614-636. http://doi.org/10.1016/0014-4827(65)90211-9.

Hong, J., Zeng, X. A., Brennan, C. S., Brennan, M., & Han, Z. (2016). Recent advances in techniques for starch esters and the applications: a review. Foods, 5(3), 50. http://doi.org/ 10.3390/foods5030050.

INCA - Instituto Nacional do Câncer. (2019). Estimativa 2020: incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva – Rio de Janeiro: INCA Available at: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf. Access in: 03/07/2022.

Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K., & Luxmi, R. (2018). Synthesis and antimicrobial evaluation of (1-(2-(Benzyloxy)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl benzoate analogues. Journal of heterocyclic chemistry, 55(7), 1720-1728. http://doi.org/10.1002/jhet.3209.

Klein, D. (2016) Química Orgânica. Compostos aromáticos. 2. ed. Rio de Janeiro: Ltc, 18,154-195.

Kubanek, J., Prusak, A. C., Snell, T. W., Giese, R. A., Hardcastle, K. I., Fairchild, C. R. Aalbersberg, W., … & Hay, M. (2005). Antineoplastic Diterpene−Benzoate Macrolides from the Fijian Red Alga Callophycus serratus. Organic letters, 7(23), 5261-5264. http://doi.org/10.1021/ol052121f.

Li, T., Smet, M., Dehaen, W., & Xu, H. (2015). Selenium − Platinum coordination dendrimers with controlled anti-cancer activity. ACS applied materials & interfaces, 8(6), 3609-3614. http://doi.org/10.1021/acsami.5b07877.

Longley, D. B., Harkin, P., & Johnston, P. G. (2003). 5-Fluorouracil: mechanisms of action and clinical strategies. Nature reviews cancer, 3, 330-338. http://doi.org/10.1038/nrc1074.

Magalhães, H. I. C. (2018). Efeitos do Flúor na Saúde Humana. [Dissertação de Mestrado em Ciências Farmacêuticas. Universidade Fernando Pessoa]. http://hdl.handle.net/10284/7327.

Martínez, M. A., Rodríguez, J. L., Lopez-Torres, B., Martínez, M., Martínez-Larrañaga, M. R., Maximiliano, J. H., … & Ares, I. (2020). Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environment international, 135, 105414. http://doi.org/10.1016/j.envint.2019.105414.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. http://doi.org/10.1016/0022-1759(83)90303-4.

Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fischer, J. L., Langer, C. E., Pekmezci, M., … & Barnholtz-Sloan, J. S. (2014). The epidemiology of glioma in adults: A “state of the science” review. Neuro-oncology, 16(7), 896–913. http://doi.org/10.1093/neuonc/nou087.

Ou, H-L., Hoffmann, R., Gonzalez-Lopez, C., Doherty, G. J., Korkola, J. E., & Munoz-Espin, D. Cellular senescence in cancer: from mechanisms to detection. (2021). Molecular oncology, 15(10), 2634–2671. http://doi.org/10.1002/1878-0261.12807.

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., Misra, A., …& Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9, 157–173. http://doi.org/10.1016/j.ccr.2006.02.019.

Rang, H. P., Ritter, J. M., Flower, R. J., & Henderson, G. (2016). Pharmacology. 8. ed. Rio de Janeiro: Elsevier.

Rosa, S. G., Brüning, C. A., Pesarico, A. P., Souza, A. C. G., & Nogueira, C. W. (2018). Anti-inflammatory and antinociceptive effects of 2,2`-

dipyridyl diselenide through reduction of inducible nitric oxide synthase, nuclear factor-kappa b and c-jun n-terminal kinase

phosphorylation levels in the mouse spinal cord. Trace Elements, 48, 38-45. http://doi.org/10.1016/j.jtemb.2018.02.021.

Silva, A. O., Dalsin, E., Onzi, G. R., Filippi-Chiela, E. C., & Lenz, G. (2016). The regrowth kinetic of the surviving population is independent

of acute and chronic responses to temozolomide in glioblastoma cell lines. Experimental cell research, 348(2), 177–183. http://doi.org/10.1016/j.yexcr.2016.09.014.

Stupp, R., Taillibert, S., Kanner, A. A., Kesari, S., Steinberg, D. M., Toms, S. A., Taylor, L. P., … & Ram, Z. (2015). Maintenance therapy with

tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA, 314(23), 2535–2543.

http://doi.org/10.1001/jama.2015.16669.

Thomas, C. J. (2006). Fluorinated natural products with clinical significance. Current topics in medicinal chemistry, 6(14), 1529-1543. http://doi.org/10.2174/156802606777951109.

Weller, M., Van Den Bent, M., Hopkins, K., Tonn, J. C., Stupp, R., Falini, A., Cohen-Jonathan-Moyal, E, … & Wick, W. (2014). EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. The Lancet. Oncology, 15(9), e395-e403. http://doi.org/10.1016/S1470-2045(14)70011-7.

Wen, P. Y., Kesari, S. (2008). Malignant gliomas in adults. The New England journal of medicine, 359(5), 492-507. http://doi.org/10.1056/NEJMra0708126.

WORLD HEALTH ORGANIZATION – WHO (1997). Model Prescribing Information: drugs used in skin diseases. Geneva.

WORLD HEALTH ORGANIZATION – WHO (2018). Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region.

Geneva.

Yakubov, E., Buchfelder, M., Eyüpoglu, I. Y., & Savaskan, N. E. (2014). Selenium action in neuro-oncology. Biological Trace Element Research, 161, 246–254. http://doi.org/10.1007/s12011-014-0111-8.

Yakubov, E., Eibl, T., Hammer, A., Holtmannspötter, M., Savaskan, N., & Steiner, H-H. (2021). Therapeutic potential of selenium in glioblastoma. Frontiers in Neuroscience, 15, 1-12. http://doi.org/10.3389/fnins.2021.666679.

Yamanaka, R., Saya, H. (2009). Molecularly targeted therapies for glioma. Annals of Neurology, 66, 717-729. http://doi.org/10.1002/ana.21793.

Zamin, L. L., Filippi-Chiela, E. C., Dillenburg-Pilla, P., Horn, F., Salbego, C., & Lenz, G. (2009). Resveratrol and quercetin cooperate to induce senescence-like growth arrest in C6 rat glioma cells. Cancer Science, 100(9), 1655-1662. http://doi.org/10.1111/j.1349-7006.2009.01215.x

Downloads

Published

2024-11-22

How to Cite

Zamin, L. L., Silva, E. da, & Godoi, B. (2024). Potential antitumor effect of organochalcogenyl-benzoates in glioma cells. Ciência E Natura, 46, e74392 . https://doi.org/10.5902/2179460X74392