Nanoemulsions of plant-based bioactive compounds with antimicrobial applications: a review
DOI:
https://doi.org/10.5902/2179460X74325Keywords:
Antimicrobian activity, Nanoparticles, Alternative productsAbstract
The search for alternative antimicrobial agents is attracting increasing scientific interest. Natural products of plant origin are sources of several substances with proven biological activities, including antimicrobial activity. The encapsulation of these products in the form of a nanoemulsion seeks to overcome problems inherent to these products, such as instability and degradation. Based on these considerations, we carried out a bibliographical survey of nanoemulsions produced from plant-derived substances, such as essential oils and extracts, with antimicrobial potential, focusing on antibacterial, antifungal and antiviral activities. Articles and documents published in scientifically relevant journals, as well as keywords classified from Health Sciences Descriptors, were used. All documents relevant to this search reported that nanoemulsions loaded with essential oils and plant extracts from different botanical species had in vitro antimicrobial activity against different microorganisms of medical importance, in addition to enhancing the antimicrobial effects of these bioproducts. Therefore, nanostructured antimicrobials with essential oils and plant extracts can be considered treatment options for microbial diseases: due to their physicochemical properties, they act as better delivery vehicles for natural products with good bioavailability, by reducing toxicity and prolonging the useful life of these natural antimicrobials, thus enhancing treatment for infectious human diseases.
Downloads
References
ABREU, F. O. M. D. S.; COSTA, E. F.; CARDIAL, M. R. L.; ANDRÉ W. P. P. Polymeric nanoemulsions enriched with Eucalyptus citriodora essential oil. Polímeros, 30, 2022. https://doi.org/10.1590/0104-1428.00920 DOI: https://doi.org/10.1590/0104-1428.00920
ACEVEDO-FANI, A.; SOLIVA-FORTUNY, R.; MARTÍN-BELLOSO, O. Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science & Technology, 60, 12-22, 2017. https://doi.org/10.1016/j.tifs.2016.10.027 DOI: https://doi.org/10.1016/j.tifs.2016.10.027
AL‐ADHAM, I. S.; JABER, N.; AL‐REMAWI, M.; AL‐AKAYLEH, F.; AL‐KAISSI, E.; ALI AGHA, A. S. A.; ... & COLLIER, P. J. A review of the antimicrobial activity of thermodynamically stable microemulsions. Letters in Applied Microbiology, 75(3), 537-547, 2022. https://doi.org/10.1111/lam.13570 DOI: https://doi.org/10.1111/lam.13570
ANTON, N.; BENOIT, J. P.; SAULNIER, P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of controlled release, 128(3), 185-199, 2008. https://doi.org/10.1016/j.jconrel.2008.02.007 DOI: https://doi.org/10.1016/j.jconrel.2008.02.007
AZEVEDO, M. M.; ALMEIDA, C. A.; CHAVES, F. C.; RICCI-JÚNIOR, E.; GARCIA, A. R.; RODRIGUES, I. A.; ... ALVIANO, D. S. Croton cajucara essential oil nanoemulsion and its antifungal activities. Processes, 9(11), 2021. https://doi.org/10.3390/pr9111872 DOI: https://doi.org/10.3390/pr9111872
BAKER, J. R.; HAMOUDA, T.; SHIH, A.; MYC, A. US Patent No. 6,559,189, 2003.
BALDIM, I.; PAZIANI, M. H.; GRIZANTE-BARIÃO, P. H.; KRESS, M. R. V. Z.; OLIVEIRA, W. P. Nanostructured lipid carriers loaded with Lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics, 14(1), 180, 2022. https://doi.org/10.3390/pharmaceutics14010180 DOI: https://doi.org/10.3390/pharmaceutics14010180
BAZANA, M. T.; CODEVILLA, C. F.; MENEZES, C. R; Nanoencapsulation of bioactive compounds: Challenges and perspectives. Current opinion in food science, 26, 47-56, 2019. https://doi.org/10.1016/j.cofs.2019.03.005 DOI: https://doi.org/10.1016/j.cofs.2019.03.005
BEDIN, A. C. Nanoemulsões contendo benzoilmetronidazol: desenvolvimento, caracterização e estudo de liberação in vitro, 2011.
BEDOYA-SERNA, C. M.; DACANAL, G. C.; FERNANDES, A. M.; PINHO, S. C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian journal of microbiology, 49, 929-935, 2018. https://doi.org/10.1016/j.bjm.2018.05.004 DOI: https://doi.org/10.1016/j.bjm.2018.05.004
BHARGAVA, K.; CONTI, D. S.; ROCHA, S. R.; ZHANG, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food microbiology, 47, 69-73, 2015. https://doi.org/10.1016/j.fm.2014.11.007 DOI: https://doi.org/10.1016/j.fm.2014.11.007
BOIRE, N. A.; RIEDEL, S.; PARRISH, N. M. Essential oils and future antibiotics: new weapons against emerging ‘superbugs’. J Anc Dis Prev Rem, 1(2), 105, 2013. http://dx.doi.org/10.4172/jadpr.1000105 DOI: https://doi.org/10.4172/2329-8731.1000105
BOTELHO, B. O.; MELO, D. C. A.; FONTES, C.; QUEIROZ, V. T.; COSTA, A. V.; MARTINS, I. V. F. Aplicação de nanoemulsões na agricultura e medicina veterinária. TÓPICOS ESPECIAIS EM CIÊNCIA ANIMAL VII, 143, 2018.
CHINNAIYAN, S. K.; PANDIYAN, R.; NATESAN, S.; CHINDAM, S.; GOUTI, A. K.; SUGUMARAN, A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—Evaluation of its antibacterial and anti-biofilm potential. Journal of Drug Delivery Science and Technology, 68, 103129, 2022. https://doi.org/10.1016/j.jddst.2022.103129 DOI: https://doi.org/10.1016/j.jddst.2022.103129
D’AGOSTINO, M.; TESSE, N.; FRIPPIAT, J. P.; MACHOUART, M.; DEBOURGOGNE, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules, 24(20), 3713, 2019. https://doi.org/10.3390/molecules24203713 DOI: https://doi.org/10.3390/molecules24203713
DAMANI, M. H.; PARTOVI, R.; SHAHAVI, M. H.; AZIZKHANI, M. Nanoemulsions of Trachyspermum copticum, Mentha pulegium and Satureja hortensis essential oils: formulation, physicochemical properties, antimicrobial and antioxidant efficiency. Journal of Food Measurement and Characterization, 16(3), 1807-1819, 2020. https://doi.org/10.1007/s11694-022-01294-5 DOI: https://doi.org/10.1007/s11694-022-01294-5
DANIELLI, L. J.; REIS, M.; BIANCHINI, M.; CAMARGO, G. S.; BORDIGNON, S. A.; GUERREIRO, I. K.; ... APEL, M. A. Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial crops and products, 50, 23-28, 2013. https://doi.org/10.1016/j.indcrop.2013.07.027 DOI: https://doi.org/10.1016/j.indcrop.2013.07.027
DAS, S.; HORVÁTH, B.; ŠAFRANKO, S.; JOKIĆ, S.; SZÉCHENYI, A;. KŐSZEGI, T. Antimicrobial activity of chamomile essential oil: Effect of different formulations. Molecules, 24(23), 4321, 2019. https://doi.org/10.3390/molecules24234321 DOI: https://doi.org/10.3390/molecules24234321
DAS, S.; SINGH, V. K.; DWIVEDY, A. K.; CHAUDHARI, A. K.; UPADHYAY, N.; SINGH, P.; ... DUBEY, N. K. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International journal of biological macromolecules, 133, 294-305, 2019. https://doi.org/10.1016/j.ijbiomac.2019.04.070 DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.070
DAS, S.; VÖRÖS-HORVÁTH., B; BENCSIK., T; MICALIZZI, G.; MONDELLO, L.; HORVÁTH, G.; ... SZÉCHENYI, A. Antimicrobial activity of different Artemisia essential oil formulations. Molecules, 25(10), 2390, 2020. https://doi.org/10.3390/molecules25102390 DOI: https://doi.org/10.3390/molecules25102390
DELSHADI, R.; BAHRAMI, A.; MCCLEMENTS, D. J.; MOORE, M. D.; WILLIAMS, L. Development of nanoparticle-delivery systems for antiviral agents: A review. Journal of Controlled Release, 331, 30-44, 2021. https://doi.org/10.1016/j.jconrel.2021.01.017 DOI: https://doi.org/10.1016/j.jconrel.2021.01.017
DONSÌ, F; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. Journal of biotechnology, 233, 106-120, 2016. https://doi.org/10.1016/j.jbiotec.2016.07.005 DOI: https://doi.org/10.1016/j.jbiotec.2016.07.005
EL-KADER, A.; ABU HASHISH, H. Encapsulation techniques of food bioproduct. Egyptian Journal of Chemistry, 63(5), 1881-1909, 2020. https://doi.org/10.21608/ejchem.2019.16269.1993 DOI: https://doi.org/10.21608/ejchem.2019.16269.1993
EL-NAGGAR, M. E.; SOLIMAN, R. A.; MORSY, O. M.; ABDEL-AZIZ, M. S. Nanoemulsion of Capsicum fruit extract as an eco-friendly antimicrobial agent for production of medical bandages. Biocatalysis and Agricultural Biotechnology, 23, 101516, 2020. https://doi.org/10.1016/j.bcab.2020.101516 DOI: https://doi.org/10.1016/j.bcab.2020.101516
FERREIRA, C. D.; NUNES, I. L. Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale research letters, 14, 1-13., 2019. https://doi.org/10.1186/s11671-018-2829-2 DOI: https://doi.org/10.1186/s11671-018-2829-2
FRANZOL, A.; REZENDE, M. C. Estabilidade de emulsões: um estudo de caso envolvendo emulsionantes aniônico, catiônico e não-iônico. Polímeros, 25, 1-9, 2015. https://doi.org/10.1590/0104-1428.1669 DOI: https://doi.org/10.1590/0104-1428.1669
GALIE, S.; GARCÍA-GUTIÉRREZ, C.; MIGUÉLEZ, E. M.; VILLAR, C. J.; LOMBÓ, F. Biofilms in the food industry: health aspects and control methods. Frontiers in microbiology, 9, 898, 2018. https://doi.org/10.3389/fmicb.2018.00898 DOI: https://doi.org/10.3389/fmicb.2018.00898
GHANI, S.; BARZEGAR, H.; NOSHAD, M.; HOJJATI, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. International journal of biological macromolecules, 112, 197-202, 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.145 DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.145
GHAZY, O. A.; FOUAD, M. T.; SALEH, H. H.; KHOLIF, A. E.; MORSY, T. A. Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food chemistry, 341, 128259, 2021. https://doi.org/10.1016/j.foodchem.2020.128259 DOI: https://doi.org/10.1016/j.foodchem.2020.128259
GUERRA-ROSAS, M. I.; MORALES-CASTRO, J.; OCHOA-MARTÍNEZ, L. A.; SALVIA-TRUJILLO, L.; MARTÍN-BELLOSO, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438-446, 2016. https://doi.org/10.1016/j.foodhyd.2015.07.017 DOI: https://doi.org/10.1016/j.foodhyd.2015.07.017
HARUN, S. N.; NORDIN, S. A.; ABD GANI, S. S.; SHAMSUDDIN, A. F.; BASRI, M.; BASRI, H. B. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. International journal of nanomedicine, 13, 2571, 2018. https://doi.org/10.2147/IJN.S151788 DOI: https://doi.org/10.2147/IJN.S151788
HASSAN, K. A.; MUJTABA, M. A. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205, 2019. https://doi.org/10.3934/agrfood.2019.1.194 DOI: https://doi.org/10.3934/agrfood.2019.1.194
HERCULANO, E. D.; PAULA, H. .C; FIGUEIREDO, E. A.; DIAS, F. G.; PEREIRA, V. D. A. Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Science and Technology, 61(2), 484-491, 2015. https://doi.org/10.1016/j.lwt.2014.12.001 DOI: https://doi.org/10.1016/j.lwt.2014.12.001
ISAH, T. Stress and defense responses in plant secondary metabolites production. Biological research, 52, 2019. https://dx.doi.org/10.1186/s40659-019-0246-3 DOI: https://doi.org/10.1186/s40659-019-0246-3
IVANOV, M.; ĆIRIĆ, A.; STOJKOVIĆ, D. Emerging antifungal targets and strategies. International Journal of Molecular Sciences, 23(5), 2756, 2022. https://doi.org/10.3390/ijms23052756 DOI: https://doi.org/10.3390/ijms23052756
JEONG, S. H.; HUH, K. M.; PARK, K. Hydrogel drug delivery systems. In Polymers in drug delivery (pp. 49-62), 2006. DOI: https://doi.org/10.1201/9781420021677-5
JEROBIN, J.; MAKWANA, P.; SURESH KUMAR, R. S.; SUNDARAMOORTHY, R.; MUKHERJEE, A.; CHANDRASEKARAN, N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. International journal of nanomedicine, 10(sup2), 77-86, 2015. DOI: https://doi.org/10.2147/IJN.S79983
KALEELULLAH, R. A.; GARUGULA, N. Teratogenic Genesis in Fetal Malformations. Cureus, 13(2), 2021. https://doi.org.10.7759/cureus.13149 DOI: https://doi.org/10.7759/cureus.13149
KALOYANIDES, G. J. Antibiotic-related nephrotoxicity. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association, 9, 130-134, 1994.
KARIM, A.; REHMAN, A.; FENG, J.; NOREEN, A.; ASSADPOUR, E.; KHARAZMI, M. S.; JAFARI, S. M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Advances in Colloid and Interface Science, 102744, 2022. https://doi.org/10.1016/j.cis.2022.102744 DOI: https://doi.org/10.1016/j.cis.2022.102744
KEMBER, M.; GRANDY, S.; RAUDONIS, R.; CHENG, Z. Non-canonical host intracellular niche links to new antimicrobial resistance mechanism. Pathogens, 11(2), 220, 2022. https://doi.org/10.3390/pathogens11020220 DOI: https://doi.org/10.3390/pathogens11020220
KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19, 2018. https://doi.org/10.1016/j.fbp.2018.05.001 DOI: https://doi.org/10.1016/j.fbp.2018.05.001
KRISHNAMOORTHY, R.; GASSEM, M. A.; ATHINARAYANAN, J.; PERIYASAMY, V. S.; PRASAD, S.; ALSHATWI, A. A. Antifungal activity of nanoemulsion from Cleome viscosa essential oil against food-borne pathogenic Candida albicans. Saudi Journal of Biological Sciences, 28(1), 286-293, 2021. https://doi.org/10.1016/j.sjbs.2020.10.001 DOI: https://doi.org/10.1016/j.sjbs.2020.10.001
KSHIRSAGAR, N. A.; PANDYA, S. K.; KIRODIAN, B. G.; SANATH, S. Liposomal drug delivery system from laboratory to clinic. Journal of postgraduate medicine, 51(5), 5, 2015.
KUMARm, N.; MANDAL, A. Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy & fuels, 32(6), 6452-6466, 2018. https://doi.org/10.1021/acs.energyfuels.8b00043 DOI: https://doi.org/10.1021/acs.energyfuels.8b00043
KUMAR, M. N. R. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27, 2000. https://doi.org/10.1016/S1381-5148(00)00038-9 DOI: https://doi.org/10.1016/S1381-5148(00)00038-9
LEÃO, K. M. M.; REIS, L. V. C.; SPERANZA, P.; RODRIGUES, A. P.; RIBEIRO, A. P. B.; MACEDO, J. A.; MACEDO, G. A. Physicochemical characterization and antimicrobial activity in novel systems containing buriti oil and structured lipids nanoemulsions. Biotechnology reports, 24, e00365, 2019. https://doi.org/10.1016/j.btre.2019.e00365 DOI: https://doi.org/10.1016/j.btre.2019.e00365
LIMA, T. P.; SOUSA, T. L.; OLIVEIRA, J. P. M.; FELIZARDO, M. G. A. C..; EVERTON, G. O; MOUCHREK FILHO, V. E. Chemical profile, thermodynamic stability and fungicidal activity of the nanoemulsion incorporated with essential oil and hydroalcoholic extract of Syzygium aromaticum (L.) Merr. & LM. Perry. Ciência e Natura, 43, 77, 2021. https://doi.org/10.5902/2179460X63929 DOI: https://doi.org/10.5902/2179460X63929
MACCELLI, A.; VITANZA, L.; IMBRIANO, A.; FRASCHETTI, C.; FILIPPI, A.; GOLDONI, P.; ... RINALDI, F. Satureja montana L. Essential oils: Chemical profiles/phytochemical screening, antimicrobial activity and o/w nanoemulsion formulations. Pharmaceutics, 12(1), 7, 2019. https://doi.org/10.3390/pharmaceutics12010007 DOI: https://doi.org/10.3390/pharmaceutics12010007
MADIGAN, M. T.; MARTINKO, J. M.; BENDER, K. S.; BUCKLEY, D. H.; STAHL, D. A. Brock's Microbiology-14ª Edition. Artmed Publisher, 2016.
MAHMOUD, D. B.; ISMAIL, W. M.; MOATASIM, Y.; KUTKAT, O.; ELMESHAD, A. N.; EZZAT, S. M.; ... MOSTAFA, A. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: In silico and in vitro studies. Journal of Drug Delivery Science and Technology, 66, 102845, 2021. https://doi.org/10.1016/j.jddst.2021.102845 DOI: https://doi.org/10.1016/j.jddst.2021.102845
MANSOUR, K. A..; EL-NEKETI, M; LAHLOUB, M. F.; ELBERMAWI, A. Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects. Molecules, 27(11), 3639, 2022. https://doi.org/10.3390/molecules27113639 DOI: https://doi.org/10.3390/molecules27113639
MAPHOSA, Y.; JIDEANI, V. A. Factors affecting the stability of emulsions stabilised by biopolymers. Science and technology behind Nanoemulsions, 65, 2018. https://doi.org/10.5772/intechopen.75308 DOI: https://doi.org/10.5772/intechopen.75308
MARINKOVIĆ, J.; BOŠKOVIĆ, M.; TASIĆ, G.; VASILIJEVIĆ, B.; MARKOVIĆ, D.; MARKOVIĆ, T.; NIKOLIĆ, B. Cymbopogon martinii essential oil nanoemulsions: Physico-chemical characterization, antibacterial and antibiofilm potential against Enterococcus faecalis. Industrial Crops and Products, 187, 115478, 2022. https://doi.org/10.1016/j.indcrop.2022.115478 DOI: https://doi.org/10.1016/j.indcrop.2022.115478
MOAZENI, M.; DAVARI, A.; SHABANZADEH, S.; AKHTARI, J.; SAEEDI, M.; MORTYEZA-SEMNANI, K.; ... NOKHODCHI, A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine, 28, 100452, 2021. https://doi.org/10.1016/j.hermed.2021.100452 DOI: https://doi.org/10.1016/j.hermed.2021.100452
MOGHIMI, R.; ALIAHMADI, A.; MCCLEMENTS, D. J.; RAFATI, H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT-Food Science and Technology, 71, 69-76, 2016. https://doi.org/10.1016/j.lwt.2016.03.018 DOI: https://doi.org/10.1016/j.lwt.2016.03.018
MOSTAFA, A. A.; AL-ASKAR, A. A.; ALMAARY, K. S.; DAWOUD, T. M.; SHOLKAMY, E. N.; BAKRI, M. M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361-366, 2018. https://doi.org/10.1016/j.sjbs.2017.02.004 DOI: https://doi.org/10.1016/j.sjbs.2017.02.004
NABILA, N.; SUADA, N. K.; DENIS, D.; YOHAN, B.; ADI, A. C.; VETERINI, A. S.; ... RACHMAWATI, H. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharmaceutical Nanotechnology, 8(1), 54-62, 2020. https://doi.org/10.2174/2211738507666191210163408 DOI: https://doi.org/10.2174/2211738507666191210163408
NASCIMENTO, J. F.; COSTA, E. F.; ABREU, F. O. M. S. CARACTERIZAÇÕES DE NANOEMULSÕES DE ALGINATO DE SÓDIO COM ÓLEO ESSENCIAL DE Eucalyptus citriodora. Revista Coleta Científica, 4(8), 15-22, 2020. https://doi.org/10.7910/DVN/7QGVTR
NIELSEN, S. F.; BOESEN, T.; LARSEN, M.; SCHØNNING, K.; KROMANN, H. Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic& medicinal chemistry, 12(11), 3047-3054, 2004. https://doi.org/10.1016/j.bmc.2004.03.071 DOI: https://doi.org/10.1016/j.bmc.2004.03.071
OKONKWO, S.; EMEJE, M.; PETERS, O.; OKHALE, S. Extraction and Nanoencapsulation of Ocimum Gratissimum Leaf Extract and Its Anti-Mycobacterial Activities. Extraction, 12(2), 2020. https://doi.org/10.7176/CMR/12-2-03 DOI: https://doi.org/10.7176/CMR/12-2-03
OUN, R.; MOUSSA, Y. E.; WHEATE, N. J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton transactions, 47(19), 6645-6653, 2018. https://doi.org.10.1039/C8DT90088D DOI: https://doi.org/10.1039/C8DT00838H
PAHO - Pan American Health Organization. WHO reveals the main causes of death and disability worldwide between 2000 and 2019. December 9, 2020. Available at: < https://www.paho.org/pt/noticias/9-12-2020-oms- reveals -main causes of death and disability-and m-all-world-between-2000-and>. Accessed on: November 13, 2021
PAIM, L. F. N. A.; DALLA LANA, D. F.; GIARETTA, M.; DANIELLI, L. J.; FUENTEFRIA, A. M.; APEL, M. A.; KÜLKAMP-GUERREIRO, I. C. Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent: Chemical composition, biological screening, and development of a nanoemulsion formulation. Industrial crops and products, 126, 280-286, 2018. https://doi.org/10.1016/j.indcrop.2018.10.016 DOI: https://doi.org/10.1016/j.indcrop.2018.10.016
PANNU, J.; MCCARTHY, A.; MARTIN, A.; HAMOUDA, T.; CIOTTI, S.; FOTHERGILL, A.; SUTCLIFFE, J. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrobial agents and chemotherapy, 53(8), 3273-3279, 2019. https://doi.org/10.1128/AAC.00218-09 DOI: https://doi.org/10.1128/AAC.00218-09
PATHANIA, R.; NAJDA A.; CHAWLA, P.; KAUSHIK, R.; KHAN, M. A. Low-energy assisted sodium alginate stabilized Phyllanthus niruri extract nanoemulsion: Characterization, in vitro antioxidant and antimicrobial application. Biotechnology Reports, 33, e00711, 2022. https://doi.org/10.1016/j.btre.2022.e00711 DOI: https://doi.org/10.1016/j.btre.2022.e00711
PURSSELL, E. Antimicrobials. Understanding Pharmacology in Nursing Practice, 147-165, 2019. DOI: https://doi.org/10.1007/978-3-030-32004-1_6
QUATRIN, P. M.; VERDI, C. M.; SOUZA, M. E.; GODOI, S. N.; KLEIN, B.; GUNDEL, A.; ... SANTOS, R. C. V. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microbial pathogenesis, 112, 230-242, 2017. https://doi.org/10.1016/j.micpath.2017.09.062 DOI: https://doi.org/10.1016/j.micpath.2017.09.062
QUINTÃO, F. J.; TAVARES, R. S.; VIEIRA-FILHO, S. A.; SOUZA, G. H.; SANTOS, O. D. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia, 23(1), 101-107, 2013. https://doi.org/10.1590/S0102-695X2013005000001 DOI: https://doi.org/10.1590/S0102-695X2013005000001
RABINOVICH-GUILATT, L.; COUVREUR, P.; LAMBERT, G.; GOLDSTEIN, D.; BENITA, S.; DUBERNET, C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chemistry and Physics of Lipids, 131(1), 1-13, 2004. https://doi.org/10.1016/j.chemphyslip.2004.04.003 DOI: https://doi.org/10.1016/j.chemphyslip.2004.04.003
RAO, P. J.; KHANUM, H. A green chemistry approach for nanoencapsulation of bioactive compound–Curcumin. LWT-Food Science and Technology, 65, 695-702, 2016. https://doi.org/10.1016/j.lwt.2015.08.070 DOI: https://doi.org/10.1016/j.lwt.2015.08.070
RAY, S.; RAYCHAUDHURI, U.; CHAKRABORTY, R. An overview of encapsulation of active compounds used in food products by drying technology. Food bioscience, 13, 76-83, 2016. https://doi.org/10.1016/j.fbio.2015.12.009 DOI: https://doi.org/10.1016/j.fbio.2015.12.009
REDDY, S. R.; MELIK, D. H.; FOGLER, H. S. Emulsion stability—theoretical studies on simultaneous flocculation and creaming. Journal of Colloid and Interface Science, 82(1), 116-127, 1981. https://doi.org/10.1016/0021-9797(81)90129-6 DOI: https://doi.org/10.1016/0021-9797(81)90129-6
REYGAERT, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482, 2018. https://doi.org.10.3934/microbiol.2018.3.482 DOI: https://doi.org/10.3934/microbiol.2018.3.482
ROOZITALAB, G.; YOUSEFPOOR, Y.; ABDOLLAHI, A.; SAFARI, M.; RASTI, F.; OSANLOO, M. Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chemical Papers, 76(7), 4261-4271, 2022. https://doi.org/10.1007/s11696-022-02185-1 DOI: https://doi.org/10.1007/s11696-022-02185-1
SAEZ-LLORENS, X.; WONG, M. M. C.; CASTANO, E. DE SUMAN ONIX, DE MORÖS DAYSI., & DE ATENCIO IRIS Impact of an antibiotic restriction policy on hospital expenditures and bacterial susceptibilities: a lesson from a pediatric institution in a developing country. The Pediatric infectious disease journal, 19(3), 200-206, 2000. DOI: https://doi.org/10.1097/00006454-200003000-00005
SAHU, S.; KATIYAR, S. S.; KUSHWAH, V.; JAIN, S.; Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine, 13(16), 1985-1998, 2018. https://doi.org/10.2217/nnm-2018-0135 DOI: https://doi.org/10.2217/nnm-2018-0135
SAMBER, N.; KHAN, A.; VARMA, A.; MANZOOR, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharmaceutical biology, 53(10), 1496-1504, 2015. https://doi.org/10.3109/13880209.2014.989623 DOI: https://doi.org/10.3109/13880209.2014.989623
SHAH, S.; CHOUGULE, M. B.; KOTHA, A. K.; KASHIKAR, R.; GODUGU, C.; RAGHUVANSHI, R. S.; ... SRIVASTAVA, S. Nanomedicine based approaches for combating viral infections. Journal of Controlled Release, 338, 80-104, 2021. https://doi.org/10.1016/j.jconrel.2021.08.011 DOI: https://doi.org/10.1016/j.jconrel.2021.08.011
SHARMA, P.; VAIWALA, R.; PARTHASARATHI, S.; PATIL, N.; VERMA, A.; WASKAR, M.; ... AYAPPA, K. G. Interactions of surfactants with the bacterial cell wall and inner membrane: Revealing the link between aggregation and antimicrobial activity. Langmuir, 38(50), 15714-15728, 2022. https://doi.org/10.1021/acs.langmuir.2c02520 DOI: https://doi.org/10.1021/acs.langmuir.2c02520
SIENKIEWICZ, M.; ŁYSAKOWSKA, M.; DENYS, P.; KOWALCZYK, E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microbial drug resistance, 18(2), 137-148, 2012. https://doi.org/10.1089/mdr.2011.0080 DOI: https://doi.org/10.1089/mdr.2011.0080
SILVA, L. C.; MIRANDA, M. A. C. M.; FREITAS, J. V.; FERREIRA, S. F. A.; LIMA, E. C. O.; OLIVEIRA, C. M. A.; ... PEREIRA, M. Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Brazilian Journal of Microbiology, 51, 125-134, 2020. https://doi.org/10.1007/s42770-019-00201-3 DOI: https://doi.org/10.1007/s42770-019-00201-3
SPELLBERG, B.; BARTLETT, J.; WUNDERINK, R.; GILBERT, D. N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. American journal of respiratory and critical care medicine, 191(2), 135-140, 2015. https://doi.org/10.1164/rccm.201410-1894OE DOI: https://doi.org/10.1164/rccm.201410-1894OE
SURASSMO, S.; MIN, S. G.; BEJRAPHA, P.; CHOI, M. J. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International, 43(1), 8-17, 2010. https://doi.org/10.1016/j.foodres.2009.07.008 DOI: https://doi.org/10.1016/j.foodres.2009.07.008
TADROS, T. Principles of emulsion stabilization with special reference to polymeric surfactants. Journal of cosmetic science, 57(2), 153-169, 2006.
TADROS, T. F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Advances in colloid and interface science, 68, 97-200, 1996. https://doi.org/10.1016/S0001-8686(96)90047-0 DOI: https://doi.org/10.1016/S0001-8686(96)90047-0
TO, D.; KAKAR, A.; KALI, G.; WIBEL, R.; KNOLL, P.; MARX, F.; BERNKOP-SCHNÜRCH, A. Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. Journal of Colloid and Interface Science, 630, 164-178, 2023. https://doi.org/10.1016/j.jcis.2022.10.077 DOI: https://doi.org/10.1016/j.jcis.2022.10.077
TOPUZ, O. K.; ÖZVURAL, E. B.; ZHAO, Q.; HUANG, Q.; CHIKINDAS, M.; GÖLÜKÇÜ, M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food chemistry, 203, 117-123, 2016. https://doi.org/10.1016/j.foodchem.2016.02.051 DOI: https://doi.org/10.1016/j.foodchem.2016.02.051
TORTORA, G. J.; CASE, C. L.; FUNKE, B. R. Microbiology-12ª Edition. Artmed Publisher, 2016.
VALIZADEH, A.; SHIRZAD, M.; ESMAEILI, F.; AMANI, A. Increased antibacterial activity of cinnamon oil microemulsionin comparison with cinnamon oil bulk and nanoemulsion. Nanomedicine Research Journal, 3(1), 37-43, 2018.
WALLACE, R. J Antimicrobial properties of plant secondary metabolites. Proceedings of the nutrition society, 63(4), 621-629, 2004. https://doi.org/10.1079/PNS2004393 DOI: https://doi.org/10.1079/PNS2004393
WANG, C. Z.; LI, W. J.; TAO, R.; YE, J. Z.; ZHANG, H. Y. Antiviral activity of a nanoemulsion of polyprenols from ginkgo leaves against influenza A H3N2 and hepatitis B virus in vitro. Molecules, 20(3), 5137-5151, 2015. https://doi.org/10.3390/molecules20035137 DOI: https://doi.org/10.3390/molecules20035137
WANG, L.; LI, X.; ZHANG, G.; DONG, J.; EASTOE, J. Oil-in-water nanoemulsions for pesticide formulations. Journal of colloid and interface science, 314(1), 230-235, 2007. https://doi.org/10.1016/j.jcis.2007.04.079 DOI: https://doi.org/10.1016/j.jcis.2007.04.079
WANG, S.; LIANG, X.; ZHAO, W.; MI, X.; ZHANG, C.; ZHANG, W.; ... JIANG, Y. Preparation of nanoemulsion of grapefruit seed extract and evaluation of its antibacterial activity. Journal of Food Processing and Preservation, 46(1), e16197, 2022. https://doi.org/10.1111/jfpp.16197 DOI: https://doi.org/10.1111/jfpp.16197
WANG, J. J.; SUNG, K. C.; YEH, C. H.; FANG, J. Y. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions. International journal of pharmaceutics, 353(1-2), 95-104, 2008. https://doi.org/10.1016/j.ijpharm.2007.11.013 DOI: https://doi.org/10.1016/j.ijpharm.2007.11.013
WEI, S.; TIAN, Q.; ZHAO, X.; LIU, X.; HUSIEN, H. M.; LIU, M.; ... LI, J. Tea Tree Oil Nanoemulsion Potentiates Antibiotics against Multidrug-Resistant Escherichia coli. ACS Infectious Diseases, 8(8), 1618-1626, 2022. https://doi.org/10.1021/acsinfecdis.2c00223 DOI: https://doi.org/10.1021/acsinfecdis.2c00223
WEISS, J.; GAYSINSKY, S.; DAVIDSON, M.; MCCLEMENTS, J. Nanostructured encapsulation systems: food antimicrobials. In Global issues in food science and technology, 425-479, 2009. https://doi.org/10.1016/B978-0-12-374124-0.00024-7 DOI: https://doi.org/10.1016/B978-0-12-374124-0.00024-7
YANG, L.; WEN, K. S.; RUAN, X.; ZHAO, Y. X.; WEI, F.; WANG, Q. Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762, 2018. https://doi.org/10.3390/molecules23040762 DOI: https://doi.org/10.3390/molecules23040762
YANG, R.; MIAO, J.; ZHANG, Z.; WAN, C.; ZOU, L.; CHEN, C.; CHEN, J. Untargeted lipidomics reveals the antifungal mechanism of essential oils nanoemulsion against Penicillium digitatum. LWT, 168, 113909, 2022. https://doi.org/10.1016/j.lwt.2022.113909 DOI: https://doi.org/10.1016/j.lwt.2022.113909
YAZGAN, H.; OZOGUL, Y.; KULEY, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. International journal of food microbiology, 306, 108266, 2019. https://doi.org/10.1016/j.ijfoodmicro.2019.108266 DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108266
ZAMANIAHARI, S.; JAMSHIDI, A.; MOOSAVY, M. H.; KHATIBI, S. A. Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. Journal of Food Measurement and Characterization, 16(4), 3289-3300, 2022. https://doi.org/10.1007/s11694-022-01436-9 DOI: https://doi.org/10.1007/s11694-022-01436-9
ZHANG, F.; RAMACHANDRAN, G.; MOTHANA, R. A.; NOMAN, O. M.; ALOBAID, W. A.; RAJIVGANDHIG; MANOHARAN, N. Anti-bacterial activity of chitosan loaded plant essential oil against multi drug resistant K. pneumoniae. Saudi Journal of Biological Sciences, 27(12), 3449-3455, 2020. https://doi.org/10.1016/j.sjbs.2020.09.025 DOI: https://doi.org/10.1016/j.sjbs.2020.09.025
ZHANG, Z.; MCCLEMENTS, D. J. Overview of nanoemulsion properties: stability, rheology, and appearance. In Nanoemulsions (pp. 21-49). Academic Press, 2018. https://doi.org/10.1016/B978-0-12-811838-2.00002-3 DOI: https://doi.org/10.1016/B978-0-12-811838-2.00002-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.