Nanoemulsions of plant-based bioactive compounds with antimicrobial applications: a review

Authors

DOI:

https://doi.org/10.5902/2179460X74325

Keywords:

Antimicrobian activity, Nanoparticles, Alternative products

Abstract

The search for alternative antimicrobial agents is attracting increasing scientific interest. Natural products of plant origin are sources of several substances with proven biological activities, including antimicrobial activity. The encapsulation of these products in the form of a nanoemulsion seeks to overcome problems inherent to these products, such as instability and degradation. Based on these considerations, we carried out a bibliographical survey of nanoemulsions produced from plant-derived substances, such as essential oils and extracts, with antimicrobial potential, focusing on antibacterial, antifungal and antiviral activities. Articles and documents published in scientifically relevant journals, as well as keywords classified from Health Sciences Descriptors, were used. All documents relevant to this search reported that nanoemulsions loaded with essential oils and plant extracts from different botanical species had in vitro antimicrobial activity against different microorganisms of medical importance, in addition to enhancing the antimicrobial effects of these bioproducts. Therefore, nanostructured antimicrobials with essential oils and plant extracts can be considered treatment options for microbial diseases: due to their physicochemical properties, they act as better delivery vehicles for natural products with good bioavailability, by reducing toxicity and prolonging the useful life of these natural antimicrobials, thus enhancing treatment for infectious human diseases.

Downloads

Download data is not yet available.

Author Biographies

Júlio César Sousa Prado, Universidade Federal do Ceará

Biologist, Master's student in Health Sciences at the Federal University of Ceará (UFC).

Guilherme Mendes Prado, Universidade Federal do Ceará

Pharmacist, Master in Health Sciences from the Federal University of Ceará (UFC).

Francisca Lidiane Linhares Aguiar, Universidade Federal do Ceará

Biologist, Dra. in Pharmaceutical Sciences from the Federal University of Ceará (UFC).

Andrea Maria Neves, Universidade Estadual do Ceará

Biologist, PhD in Biotechnology from the State University of Ceará (UECE).

Joice Farias do Nascimento, Universidade Estadual do Ceará

Chemistry, Master's student in Natural Sciences at the State University of Ceará (UECE).

Flávia Oliveira Monteiro da Silva Abreu, Universidade Estadual do Ceará

Dra. in Mining, Metallurgical and Materials Engineering. Professor at the State University of Ceará (UECE).

Raquel Oliveira dos Santos Fontenelle, State University of Vale do Acaraú

Dra. in Veterinary Sciences. Professor at the State University Vale do Acaraú (UVA), State University of Ceará (UECE) and Federal University of Ceará (UFC).

References

ABREU, F. O. M. D. S.; COSTA, E. F.; CARDIAL, M. R. L.; ANDRÉ W. P. P. Polymeric nanoemulsions enriched with Eucalyptus citriodora essential oil. Polímeros, 30, 2022. https://doi.org/10.1590/0104-1428.00920

ACEVEDO-FANI, A.; SOLIVA-FORTUNY, R.; MARTÍN-BELLOSO, O. Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science & Technology, 60, 12-22, 2017. https://doi.org/10.1016/j.tifs.2016.10.027

AL‐ADHAM, I. S.; JABER, N.; AL‐REMAWI, M.; AL‐AKAYLEH, F.; AL‐KAISSI, E.; ALI AGHA, A. S. A.; ... & COLLIER, P. J. A review of the antimicrobial activity of thermodynamically stable microemulsions. Letters in Applied Microbiology, 75(3), 537-547, 2022. https://doi.org/10.1111/lam.13570

ANTON, N.; BENOIT, J. P.; SAULNIER, P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of controlled release, 128(3), 185-199, 2008. https://doi.org/10.1016/j.jconrel.2008.02.007

AZEVEDO, M. M.; ALMEIDA, C. A.; CHAVES, F. C.; RICCI-JÚNIOR, E.; GARCIA, A. R.; RODRIGUES, I. A.; ... ALVIANO, D. S. Croton cajucara essential oil nanoemulsion and its antifungal activities. Processes, 9(11), 2021. https://doi.org/10.3390/pr9111872

BAKER, J. R.; HAMOUDA, T.; SHIH, A.; MYC, A. US Patent No. 6,559,189, 2003.

BALDIM, I.; PAZIANI, M. H.; GRIZANTE-BARIÃO, P. H.; KRESS, M. R. V. Z.; OLIVEIRA, W. P. Nanostructured lipid carriers loaded with Lippia sidoides essential oil as a strategy to combat the multidrug-resistant Candida auris. Pharmaceutics, 14(1), 180, 2022. https://doi.org/10.3390/pharmaceutics14010180

BAZANA, M. T.; CODEVILLA, C. F.; MENEZES, C. R; Nanoencapsulation of bioactive compounds: Challenges and perspectives. Current opinion in food science, 26, 47-56, 2019. https://doi.org/10.1016/j.cofs.2019.03.005

BEDIN, A. C. Nanoemulsões contendo benzoilmetronidazol: desenvolvimento, caracterização e estudo de liberação in vitro, 2011.

BEDOYA-SERNA, C. M.; DACANAL, G. C.; FERNANDES, A. M.; PINHO, S. C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian journal of microbiology, 49, 929-935, 2018. https://doi.org/10.1016/j.bjm.2018.05.004

BHARGAVA, K.; CONTI, D. S.; ROCHA, S. R.; ZHANG, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food microbiology, 47, 69-73, 2015. https://doi.org/10.1016/j.fm.2014.11.007

BOIRE, N. A.; RIEDEL, S.; PARRISH, N. M. Essential oils and future antibiotics: new weapons against emerging ‘superbugs’. J Anc Dis Prev Rem, 1(2), 105, 2013. http://dx.doi.org/10.4172/jadpr.1000105

BOTELHO, B. O.; MELO, D. C. A.; FONTES, C.; QUEIROZ, V. T.; COSTA, A. V.; MARTINS, I. V. F. Aplicação de nanoemulsões na agricultura e medicina veterinária. TÓPICOS ESPECIAIS EM CIÊNCIA ANIMAL VII, 143, 2018.

CHINNAIYAN, S. K.; PANDIYAN, R.; NATESAN, S.; CHINDAM, S.; GOUTI, A. K.; SUGUMARAN, A. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—Evaluation of its antibacterial and anti-biofilm potential. Journal of Drug Delivery Science and Technology, 68, 103129, 2022. https://doi.org/10.1016/j.jddst.2022.103129

D’AGOSTINO, M.; TESSE, N.; FRIPPIAT, J. P.; MACHOUART, M.; DEBOURGOGNE, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules, 24(20), 3713, 2019. https://doi.org/10.3390/molecules24203713

DAMANI, M. H.; PARTOVI, R.; SHAHAVI, M. H.; AZIZKHANI, M. Nanoemulsions of Trachyspermum copticum, Mentha pulegium and Satureja hortensis essential oils: formulation, physicochemical properties, antimicrobial and antioxidant efficiency. Journal of Food Measurement and Characterization, 16(3), 1807-1819, 2020. https://doi.org/10.1007/s11694-022-01294-5

DANIELLI, L. J.; REIS, M.; BIANCHINI, M.; CAMARGO, G. S.; BORDIGNON, S. A.; GUERREIRO, I. K.; ... APEL, M. A. Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial crops and products, 50, 23-28, 2013. https://doi.org/10.1016/j.indcrop.2013.07.027

DAS, S.; HORVÁTH, B.; ŠAFRANKO, S.; JOKIĆ, S.; SZÉCHENYI, A;. KŐSZEGI, T. Antimicrobial activity of chamomile essential oil: Effect of different formulations. Molecules, 24(23), 4321, 2019. https://doi.org/10.3390/molecules24234321

DAS, S.; SINGH, V. K.; DWIVEDY, A. K.; CHAUDHARI, A. K.; UPADHYAY, N.; SINGH, P.; ... DUBEY, N. K. Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International journal of biological macromolecules, 133, 294-305, 2019. https://doi.org/10.1016/j.ijbiomac.2019.04.070

DAS, S.; VÖRÖS-HORVÁTH., B; BENCSIK., T; MICALIZZI, G.; MONDELLO, L.; HORVÁTH, G.; ... SZÉCHENYI, A. Antimicrobial activity of different Artemisia essential oil formulations. Molecules, 25(10), 2390, 2020. https://doi.org/10.3390/molecules25102390

DELSHADI, R.; BAHRAMI, A.; MCCLEMENTS, D. J.; MOORE, M. D.; WILLIAMS, L. Development of nanoparticle-delivery systems for antiviral agents: A review. Journal of Controlled Release, 331, 30-44, 2021. https://doi.org/10.1016/j.jconrel.2021.01.017

DONSÌ, F; FERRARI, G. Essential oil nanoemulsions as antimicrobial agents in food. Journal of biotechnology, 233, 106-120, 2016. https://doi.org/10.1016/j.jbiotec.2016.07.005

EL-KADER, A.; ABU HASHISH, H. Encapsulation techniques of food bioproduct. Egyptian Journal of Chemistry, 63(5), 1881-1909, 2020. https://doi.org/10.21608/ejchem.2019.16269.1993

EL-NAGGAR, M. E.; SOLIMAN, R. A.; MORSY, O. M.; ABDEL-AZIZ, M. S. Nanoemulsion of Capsicum fruit extract as an eco-friendly antimicrobial agent for production of medical bandages. Biocatalysis and Agricultural Biotechnology, 23, 101516, 2020. https://doi.org/10.1016/j.bcab.2020.101516

FERREIRA, C. D.; NUNES, I. L. Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale research letters, 14, 1-13., 2019. https://doi.org/10.1186/s11671-018-2829-2

FRANZOL, A.; REZENDE, M. C. Estabilidade de emulsões: um estudo de caso envolvendo emulsionantes aniônico, catiônico e não-iônico. Polímeros, 25, 1-9, 2015. https://doi.org/10.1590/0104-1428.1669

GALIE, S.; GARCÍA-GUTIÉRREZ, C.; MIGUÉLEZ, E. M.; VILLAR, C. J.; LOMBÓ, F. Biofilms in the food industry: health aspects and control methods. Frontiers in microbiology, 9, 898, 2018. https://doi.org/10.3389/fmicb.2018.00898

GHANI, S.; BARZEGAR, H.; NOSHAD, M.; HOJJATI, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. International journal of biological macromolecules, 112, 197-202, 2018. https://doi.org/10.1016/j.ijbiomac.2018.01.145

GHAZY, O. A.; FOUAD, M. T.; SALEH, H. H.; KHOLIF, A. E.; MORSY, T. A. Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food chemistry, 341, 128259, 2021. https://doi.org/10.1016/j.foodchem.2020.128259

GUERRA-ROSAS, M. I.; MORALES-CASTRO, J.; OCHOA-MARTÍNEZ, L. A.; SALVIA-TRUJILLO, L.; MARTÍN-BELLOSO, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438-446, 2016. https://doi.org/10.1016/j.foodhyd.2015.07.017

HARUN, S. N.; NORDIN, S. A.; ABD GANI, S. S.; SHAMSUDDIN, A. F.; BASRI, M.; BASRI, H. B. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: Designs, characterizations, and pharmacokinetics. International journal of nanomedicine, 13, 2571, 2018. https://doi.org/10.2147/IJN.S151788

HASSAN, K. A.; MUJTABA, M. A. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205, 2019. https://doi.org/10.3934/agrfood.2019.1.194

HERCULANO, E. D.; PAULA, H. .C; FIGUEIREDO, E. A.; DIAS, F. G.; PEREIRA, V. D. A. Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Science and Technology, 61(2), 484-491, 2015. https://doi.org/10.1016/j.lwt.2014.12.001

ISAH, T. Stress and defense responses in plant secondary metabolites production. Biological research, 52, 2019. https://dx.doi.org/10.1186/s40659-019-0246-3

IVANOV, M.; ĆIRIĆ, A.; STOJKOVIĆ, D. Emerging antifungal targets and strategies. International Journal of Molecular Sciences, 23(5), 2756, 2022. https://doi.org/10.3390/ijms23052756

JEONG, S. H.; HUH, K. M.; PARK, K. Hydrogel drug delivery systems. In Polymers in drug delivery (pp. 49-62), 2006.

JEROBIN, J.; MAKWANA, P.; SURESH KUMAR, R. S.; SUNDARAMOORTHY, R.; MUKHERJEE, A.; CHANDRASEKARAN, N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. International journal of nanomedicine, 10(sup2), 77-86, 2015.

KALEELULLAH, R. A.; GARUGULA, N. Teratogenic Genesis in Fetal Malformations. Cureus, 13(2), 2021. https://doi.org.10.7759/cureus.13149

KALOYANIDES, G. J. Antibiotic-related nephrotoxicity. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association, 9, 130-134, 1994.

KARIM, A.; REHMAN, A.; FENG, J.; NOREEN, A.; ASSADPOUR, E.; KHARAZMI, M. S.; JAFARI, S. M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Advances in Colloid and Interface Science, 102744, 2022. https://doi.org/10.1016/j.cis.2022.102744

KEMBER, M.; GRANDY, S.; RAUDONIS, R.; CHENG, Z. Non-canonical host intracellular niche links to new antimicrobial resistance mechanism. Pathogens, 11(2), 220, 2022. https://doi.org/10.3390/pathogens11020220

KHANEGHAH, A. M.; HASHEMI, S. M. B.; LIMBO, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19, 2018. https://doi.org/10.1016/j.fbp.2018.05.001

KRISHNAMOORTHY, R.; GASSEM, M. A.; ATHINARAYANAN, J.; PERIYASAMY, V. S.; PRASAD, S.; ALSHATWI, A. A. Antifungal activity of nanoemulsion from Cleome viscosa essential oil against food-borne pathogenic Candida albicans. Saudi Journal of Biological Sciences, 28(1), 286-293, 2021. https://doi.org/10.1016/j.sjbs.2020.10.001

KSHIRSAGAR, N. A.; PANDYA, S. K.; KIRODIAN, B. G.; SANATH, S. Liposomal drug delivery system from laboratory to clinic. Journal of postgraduate medicine, 51(5), 5, 2015.

KUMARm, N.; MANDAL, A. Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy & fuels, 32(6), 6452-6466, 2018. https://doi.org/10.1021/acs.energyfuels.8b00043

KUMAR, M. N. R. A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27, 2000. https://doi.org/10.1016/S1381-5148(00)00038-9

LEÃO, K. M. M.; REIS, L. V. C.; SPERANZA, P.; RODRIGUES, A. P.; RIBEIRO, A. P. B.; MACEDO, J. A.; MACEDO, G. A. Physicochemical characterization and antimicrobial activity in novel systems containing buriti oil and structured lipids nanoemulsions. Biotechnology reports, 24, e00365, 2019. https://doi.org/10.1016/j.btre.2019.e00365

LIMA, T. P.; SOUSA, T. L.; OLIVEIRA, J. P. M.; FELIZARDO, M. G. A. C..; EVERTON, G. O; MOUCHREK FILHO, V. E. Chemical profile, thermodynamic stability and fungicidal activity of the nanoemulsion incorporated with essential oil and hydroalcoholic extract of Syzygium aromaticum (L.) Merr. & LM. Perry. Ciência e Natura, 43, 77, 2021. https://doi.org/10.5902/2179460X63929

MACCELLI, A.; VITANZA, L.; IMBRIANO, A.; FRASCHETTI, C.; FILIPPI, A.; GOLDONI, P.; ... RINALDI, F. Satureja montana L. Essential oils: Chemical profiles/phytochemical screening, antimicrobial activity and o/w nanoemulsion formulations. Pharmaceutics, 12(1), 7, 2019. https://doi.org/10.3390/pharmaceutics12010007

MADIGAN, M. T.; MARTINKO, J. M.; BENDER, K. S.; BUCKLEY, D. H.; STAHL, D. A. Brock's Microbiology-14ª Edition. Artmed Publisher, 2016.

MAHMOUD, D. B.; ISMAIL, W. M.; MOATASIM, Y.; KUTKAT, O.; ELMESHAD, A. N.; EZZAT, S. M.; ... MOSTAFA, A. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: In silico and in vitro studies. Journal of Drug Delivery Science and Technology, 66, 102845, 2021. https://doi.org/10.1016/j.jddst.2021.102845

MANSOUR, K. A..; EL-NEKETI, M; LAHLOUB, M. F.; ELBERMAWI, A. Nanoemulsions of Jasminum humile L. and Jasminum grandiflorum L. Essential Oils: An Approach to Enhance Their Cytotoxic and Antiviral Effects. Molecules, 27(11), 3639, 2022. https://doi.org/10.3390/molecules27113639

MAPHOSA, Y.; JIDEANI, V. A. Factors affecting the stability of emulsions stabilised by biopolymers. Science and technology behind Nanoemulsions, 65, 2018. https://doi.org/10.5772/intechopen.75308

MARINKOVIĆ, J.; BOŠKOVIĆ, M.; TASIĆ, G.; VASILIJEVIĆ, B.; MARKOVIĆ, D.; MARKOVIĆ, T.; NIKOLIĆ, B. Cymbopogon martinii essential oil nanoemulsions: Physico-chemical characterization, antibacterial and antibiofilm potential against Enterococcus faecalis. Industrial Crops and Products, 187, 115478, 2022. https://doi.org/10.1016/j.indcrop.2022.115478

MOAZENI, M.; DAVARI, A.; SHABANZADEH, S.; AKHTARI, J.; SAEEDI, M.; MORTYEZA-SEMNANI, K.; ... NOKHODCHI, A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine, 28, 100452, 2021. https://doi.org/10.1016/j.hermed.2021.100452

MOGHIMI, R.; ALIAHMADI, A.; MCCLEMENTS, D. J.; RAFATI, H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT-Food Science and Technology, 71, 69-76, 2016. https://doi.org/10.1016/j.lwt.2016.03.018

MOSTAFA, A. A.; AL-ASKAR, A. A.; ALMAARY, K. S.; DAWOUD, T. M.; SHOLKAMY, E. N.; BAKRI, M. M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361-366, 2018. https://doi.org/10.1016/j.sjbs.2017.02.004

NABILA, N.; SUADA, N. K.; DENIS, D.; YOHAN, B.; ADI, A. C.; VETERINI, A. S.; ... RACHMAWATI, H. Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharmaceutical Nanotechnology, 8(1), 54-62, 2020. https://doi.org/10.2174/2211738507666191210163408

NASCIMENTO, J. F.; COSTA, E. F.; ABREU, F. O. M. S. CARACTERIZAÇÕES DE NANOEMULSÕES DE ALGINATO DE SÓDIO COM ÓLEO ESSENCIAL DE Eucalyptus citriodora. Revista Coleta Científica, 4(8), 15-22, 2020. https://doi.org/10.7910/DVN/7QGVTR

NIELSEN, S. F.; BOESEN, T.; LARSEN, M.; SCHØNNING, K.; KROMANN, H. Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic& medicinal chemistry, 12(11), 3047-3054, 2004. https://doi.org/10.1016/j.bmc.2004.03.071

OKONKWO, S.; EMEJE, M.; PETERS, O.; OKHALE, S. Extraction and Nanoencapsulation of Ocimum Gratissimum Leaf Extract and Its Anti-Mycobacterial Activities. Extraction, 12(2), 2020. https://doi.org/10.7176/CMR/12-2-03

OUN, R.; MOUSSA, Y. E.; WHEATE, N. J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton transactions, 47(19), 6645-6653, 2018. https://doi.org.10.1039/C8DT90088D

PAHO - Pan American Health Organization. WHO reveals the main causes of death and disability worldwide between 2000 and 2019. December 9, 2020. Available at: < https://www.paho.org/pt/noticias/9-12-2020-oms- reveals -main causes of death and disability-and m-all-world-between-2000-and>. Accessed on: November 13, 2021

PAIM, L. F. N. A.; DALLA LANA, D. F.; GIARETTA, M.; DANIELLI, L. J.; FUENTEFRIA, A. M.; APEL, M. A.; KÜLKAMP-GUERREIRO, I. C. Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent: Chemical composition, biological screening, and development of a nanoemulsion formulation. Industrial crops and products, 126, 280-286, 2018. https://doi.org/10.1016/j.indcrop.2018.10.016

PANNU, J.; MCCARTHY, A.; MARTIN, A.; HAMOUDA, T.; CIOTTI, S.; FOTHERGILL, A.; SUTCLIFFE, J. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrobial agents and chemotherapy, 53(8), 3273-3279, 2019. https://doi.org/10.1128/AAC.00218-09

PATHANIA, R.; NAJDA A.; CHAWLA, P.; KAUSHIK, R.; KHAN, M. A. Low-energy assisted sodium alginate stabilized Phyllanthus niruri extract nanoemulsion: Characterization, in vitro antioxidant and antimicrobial application. Biotechnology Reports, 33, e00711, 2022. https://doi.org/10.1016/j.btre.2022.e00711

PURSSELL, E. Antimicrobials. Understanding Pharmacology in Nursing Practice, 147-165, 2019.

QUATRIN, P. M.; VERDI, C. M.; SOUZA, M. E.; GODOI, S. N.; KLEIN, B.; GUNDEL, A.; ... SANTOS, R. C. V. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microbial pathogenesis, 112, 230-242, 2017. https://doi.org/10.1016/j.micpath.2017.09.062

QUINTÃO, F. J.; TAVARES, R. S.; VIEIRA-FILHO, S. A.; SOUZA, G. H.; SANTOS, O. D. Hydroalcoholic extracts of Vellozia squamata: study of its nanoemulsions for pharmaceutical or cosmetic applications. Revista Brasileira de Farmacognosia, 23(1), 101-107, 2013. https://doi.org/10.1590/S0102-695X2013005000001

RABINOVICH-GUILATT, L.; COUVREUR, P.; LAMBERT, G.; GOLDSTEIN, D.; BENITA, S.; DUBERNET, C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chemistry and Physics of Lipids, 131(1), 1-13, 2004. https://doi.org/10.1016/j.chemphyslip.2004.04.003

RAO, P. J.; KHANUM, H. A green chemistry approach for nanoencapsulation of bioactive compound–Curcumin. LWT-Food Science and Technology, 65, 695-702, 2016. https://doi.org/10.1016/j.lwt.2015.08.070

RAY, S.; RAYCHAUDHURI, U.; CHAKRABORTY, R. An overview of encapsulation of active compounds used in food products by drying technology. Food bioscience, 13, 76-83, 2016. https://doi.org/10.1016/j.fbio.2015.12.009

REDDY, S. R.; MELIK, D. H.; FOGLER, H. S. Emulsion stability—theoretical studies on simultaneous flocculation and creaming. Journal of Colloid and Interface Science, 82(1), 116-127, 1981. https://doi.org/10.1016/0021-9797(81)90129-6

REYGAERT, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482, 2018. https://doi.org.10.3934/microbiol.2018.3.482

ROOZITALAB, G.; YOUSEFPOOR, Y.; ABDOLLAHI, A.; SAFARI, M.; RASTI, F.; OSANLOO, M. Antioxidative, anticancer, and antibacterial activities of a nanoemulsion-based gel containing Myrtus communis L. essential oil. Chemical Papers, 76(7), 4261-4271, 2022. https://doi.org/10.1007/s11696-022-02185-1

SAEZ-LLORENS, X.; WONG, M. M. C.; CASTANO, E. DE SUMAN ONIX, DE MORÖS DAYSI., & DE ATENCIO IRIS Impact of an antibiotic restriction policy on hospital expenditures and bacterial susceptibilities: a lesson from a pediatric institution in a developing country. The Pediatric infectious disease journal, 19(3), 200-206, 2000.

SAHU, S.; KATIYAR, S. S.; KUSHWAH, V.; JAIN, S.; Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine, 13(16), 1985-1998, 2018. https://doi.org/10.2217/nnm-2018-0135

SAMBER, N.; KHAN, A.; VARMA, A.; MANZOOR, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharmaceutical biology, 53(10), 1496-1504, 2015. https://doi.org/10.3109/13880209.2014.989623

SHAH, S.; CHOUGULE, M. B.; KOTHA, A. K.; KASHIKAR, R.; GODUGU, C.; RAGHUVANSHI, R. S.; ... SRIVASTAVA, S. Nanomedicine based approaches for combating viral infections. Journal of Controlled Release, 338, 80-104, 2021. https://doi.org/10.1016/j.jconrel.2021.08.011

SHARMA, P.; VAIWALA, R.; PARTHASARATHI, S.; PATIL, N.; VERMA, A.; WASKAR, M.; ... AYAPPA, K. G. Interactions of surfactants with the bacterial cell wall and inner membrane: Revealing the link between aggregation and antimicrobial activity. Langmuir, 38(50), 15714-15728, 2022. https://doi.org/10.1021/acs.langmuir.2c02520

SIENKIEWICZ, M.; ŁYSAKOWSKA, M.; DENYS, P.; KOWALCZYK, E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microbial drug resistance, 18(2), 137-148, 2012. https://doi.org/10.1089/mdr.2011.0080

SILVA, L. C.; MIRANDA, M. A. C. M.; FREITAS, J. V.; FERREIRA, S. F. A.; LIMA, E. C. O.; OLIVEIRA, C. M. A.; ... PEREIRA, M. Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Brazilian Journal of Microbiology, 51, 125-134, 2020. https://doi.org/10.1007/s42770-019-00201-3

SPELLBERG, B.; BARTLETT, J.; WUNDERINK, R.; GILBERT, D. N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. American journal of respiratory and critical care medicine, 191(2), 135-140, 2015. https://doi.org/10.1164/rccm.201410-1894OE

SURASSMO, S.; MIN, S. G.; BEJRAPHA, P.; CHOI, M. J. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International, 43(1), 8-17, 2010. https://doi.org/10.1016/j.foodres.2009.07.008

TADROS, T. Principles of emulsion stabilization with special reference to polymeric surfactants. Journal of cosmetic science, 57(2), 153-169, 2006.

TADROS, T. F. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Advances in colloid and interface science, 68, 97-200, 1996. https://doi.org/10.1016/S0001-8686(96)90047-0

TO, D.; KAKAR, A.; KALI, G.; WIBEL, R.; KNOLL, P.; MARX, F.; BERNKOP-SCHNÜRCH, A. Iminated aminoglycosides in self-emulsifying drug delivery systems: Dual approach to break down the microbial defense. Journal of Colloid and Interface Science, 630, 164-178, 2023. https://doi.org/10.1016/j.jcis.2022.10.077

TOPUZ, O. K.; ÖZVURAL, E. B.; ZHAO, Q.; HUANG, Q.; CHIKINDAS, M.; GÖLÜKÇÜ, M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food chemistry, 203, 117-123, 2016. https://doi.org/10.1016/j.foodchem.2016.02.051

TORTORA, G. J.; CASE, C. L.; FUNKE, B. R. Microbiology-12ª Edition. Artmed Publisher, 2016.

VALIZADEH, A.; SHIRZAD, M.; ESMAEILI, F.; AMANI, A. Increased antibacterial activity of cinnamon oil microemulsionin comparison with cinnamon oil bulk and nanoemulsion. Nanomedicine Research Journal, 3(1), 37-43, 2018.

WALLACE, R. J Antimicrobial properties of plant secondary metabolites. Proceedings of the nutrition society, 63(4), 621-629, 2004. https://doi.org/10.1079/PNS2004393

WANG, C. Z.; LI, W. J.; TAO, R.; YE, J. Z.; ZHANG, H. Y. Antiviral activity of a nanoemulsion of polyprenols from ginkgo leaves against influenza A H3N2 and hepatitis B virus in vitro. Molecules, 20(3), 5137-5151, 2015. https://doi.org/10.3390/molecules20035137

WANG, L.; LI, X.; ZHANG, G.; DONG, J.; EASTOE, J. Oil-in-water nanoemulsions for pesticide formulations. Journal of colloid and interface science, 314(1), 230-235, 2007. https://doi.org/10.1016/j.jcis.2007.04.079

WANG, S.; LIANG, X.; ZHAO, W.; MI, X.; ZHANG, C.; ZHANG, W.; ... JIANG, Y. Preparation of nanoemulsion of grapefruit seed extract and evaluation of its antibacterial activity. Journal of Food Processing and Preservation, 46(1), e16197, 2022. https://doi.org/10.1111/jfpp.16197

WANG, J. J.; SUNG, K. C.; YEH, C. H.; FANG, J. Y. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions. International journal of pharmaceutics, 353(1-2), 95-104, 2008. https://doi.org/10.1016/j.ijpharm.2007.11.013

WEI, S.; TIAN, Q.; ZHAO, X.; LIU, X.; HUSIEN, H. M.; LIU, M.; ... LI, J. Tea Tree Oil Nanoemulsion Potentiates Antibiotics against Multidrug-Resistant Escherichia coli. ACS Infectious Diseases, 8(8), 1618-1626, 2022. https://doi.org/10.1021/acsinfecdis.2c00223

WEISS, J.; GAYSINSKY, S.; DAVIDSON, M.; MCCLEMENTS, J. Nanostructured encapsulation systems: food antimicrobials. In Global issues in food science and technology, 425-479, 2009. https://doi.org/10.1016/B978-0-12-374124-0.00024-7

YANG, L.; WEN, K. S.; RUAN, X.; ZHAO, Y. X.; WEI, F.; WANG, Q. Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762, 2018. https://doi.org/10.3390/molecules23040762

YANG, R.; MIAO, J.; ZHANG, Z.; WAN, C.; ZOU, L.; CHEN, C.; CHEN, J. Untargeted lipidomics reveals the antifungal mechanism of essential oils nanoemulsion against Penicillium digitatum. LWT, 168, 113909, 2022. https://doi.org/10.1016/j.lwt.2022.113909

YAZGAN, H.; OZOGUL, Y.; KULEY, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. International journal of food microbiology, 306, 108266, 2019. https://doi.org/10.1016/j.ijfoodmicro.2019.108266

ZAMANIAHARI, S.; JAMSHIDI, A.; MOOSAVY, M. H.; KHATIBI, S. A. Preparation and evaluation of Mentha spicata L. essential oil nanoemulsion: physicochemical properties, antibacterial activity against foodborne pathogens and antioxidant properties. Journal of Food Measurement and Characterization, 16(4), 3289-3300, 2022. https://doi.org/10.1007/s11694-022-01436-9

ZHANG, F.; RAMACHANDRAN, G.; MOTHANA, R. A.; NOMAN, O. M.; ALOBAID, W. A.; RAJIVGANDHIG; MANOHARAN, N. Anti-bacterial activity of chitosan loaded plant essential oil against multi drug resistant K. pneumoniae. Saudi Journal of Biological Sciences, 27(12), 3449-3455, 2020. https://doi.org/10.1016/j.sjbs.2020.09.025

ZHANG, Z.; MCCLEMENTS, D. J. Overview of nanoemulsion properties: stability, rheology, and appearance. In Nanoemulsions (pp. 21-49). Academic Press, 2018. https://doi.org/10.1016/B978-0-12-811838-2.00002-3

Published

2024-04-10

How to Cite

Prado, J. C. S., Prado, G. M., Aguiar, F. L. L., Neves, A. M., Nascimento, J. F. do, Abreu, F. O. M. da S., & Fontenelle, R. O. dos S. (2024). Nanoemulsions of plant-based bioactive compounds with antimicrobial applications: a review. Ciência E Natura, 46, e74325. https://doi.org/10.5902/2179460X74325