Obtaining the elements of Pascal’s Triangle by a new recurrence relation
DOI:
https://doi.org/10.5902/2179460X74096Keywords:
Pascal's Triangle, Arithmetic triangle, Recurrence, Difference equationsAbstract
Pascal’s Triangle is a numerical arrangement, constructed from binomial numbers and although istaught only in High School, several possible applications can already be seen in Elementary School. Theanalysis and development of these arrangements foster the student’s skills that involve critical andlogical-mathematical reasoning, in line with the provisions of Brazil’s National Common Curricular Base(BNCC). In this sense, this article promoted a detailed study of Pascal’s Triangle, indicating, in addition tothe already known tools, a new recurrence relation which permits obtaining elements of the triangleonly with elementary operations, without the use of combinatorial analysis. This new relation was alsoinserted in the context of the difference equations, being a homogeneous linear differential equationthat has the combination formula itself as a solution. Despite the recursive equation having the limitation of depending on the preceding element to the one to be calculated, its usage offers countlesspossibilities in education, and in this sense, some applications were evidenced.
Downloads
References
Affonso, A. (2014). O triˆangulo de Pascal e o Binˆomio de Newton. (mestrado profissional em matem´atica em rede nacional), UFF, Niter´oi, RJ, Brasil.
Bloch, E. D. (2011). The Real Numbers and Real Analysis. Springer.
Boyer, C. B. (1996). Hist´oria da matem´atica. Editora Blucher, 3 edition.
Brasil (2002). PCN+ Ensino M´edio: orientac¸ ˜oes educacionais complementares aos Parˆametros Curriculares Nacionais. Ciˆencias da Natureza, Matem´atica e suas Tecnologias. Bras´ılia.
Brasil (2018). Base Nacional Comum Curricular. Bras´ılia: Minist´erio da Educac¸ ˜ao.
Cutland, N. (1980). Computability: an introduction to recursive function theory. Cambridge University Press.
Davis, T. (2010). Exploring pascal’s triangle. In Mathematical Circles Topics.
Elaydi, S. (2005). Introduction to Difference Equations. Springer.
Fossa, J. A. (2017). Aleae interruptar: uma curiosa aplicac¸ ˜ao do triˆangulo de pascal. Boletim Cearense de Educac¸ ˜ao e Hist´oria da Matem´atica, 4(11):22–34.
Lima, E. L., Carvalho, P. C. P., Wagner, E., & Morgado, A. C. (2004). A Matem´atica do Ensino M´edio volume 2. Sociedade Brasileira de Matem´atica.
Lins, R. C. & Gimenez, J. (1997). Perspectivas em Aritm´etica e ´Álgebra para o s´eculo XXI. Papirus.
Lopes, M. S. & Carneiro, R. S. (2020). Triˆangulo de pascal: breve hist´oria e uma proposta did´atica para o ensino. Revista Eletrˆonica Matem´atica e Estat´ıstica em Foco, 7(1):75–97.
Marques, F. S. (2022). Recursividade em pr´aticas educativas investigativas: significados produzidos por participantes de um processo de formaç˜ao de professores de matem´atica. (programa de p´os-graduação em educação em ciˆencias e matem´atica), IFES, Vila Velha, ES, Brasil.
Morgado, A. C., Carvalho, J. B. P., & Fernandez, P. (2020). A´alise combinat´oria e probabilidade. Editora SBM, 11 edition.
Rosadas, V. D. S. (2016). Triˆangulo de Pascal: curiosidades e aplicac¸ ˜oes na escola b´asica. (mestrado em matem´atica), PUC-RJ, Rio de Janeiro, RJ, Brasil.
Santiago, T. P. (2016). Triˆangulo de Pascal: aplicac¸ ˜oes no ensino fundamental e m´edio. (mestrado profissional em matem´atica em rede nacional), UFBA, Salvador, BA, Brasil.
Santos, N. L. P. (2017). O misterioso e enigm´atico mundo de Pascal e Fibonacci. (mestrado profissional em matem´atica em rede nacional), UNESP, S˜ao Jos´e do Rio Preto, SP, Brasil.
Silva, M. O. (2015). Do triˆangulo `a pirˆamide de Pascal. (mestrado profissional em matem´atica em rede nacional), UESC, Ilh´eus, BA, Brasil.
Snustad, D. P. & Simmons, M. J. (2008). Fundamentos de Gen´etica. Guanabara, 4 edition.
Souza, C. M. (2021). Simetrias no Triˆangulo de Pascal. (mestrado profissional em matem´atica em rede nacional), UFSJ, S˜ao Jo˜ao Del Rei, MG, Brasil.
Souza, C. M. (2022). Triˆangulo de Pascal e An´alise Combinat´oria: observando padr˜oes e fazendo conjecturas. (mestrado profissional em matem´atica em rede nacional), UFF, Niter´oi, RJ, Brasil.
Souza, C. R. (2019). Os livros did´aticos de Matem´atica, a variedade de problemas propostos e o Binˆomio de Newton. (mestrado profissional em matem´atica em rede nacional), UTFPR, Pato Branco, PR, Brasil.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.