Polyurethanes Thermal, Hydrolytic and Soil Degradation: Systematic Literature Review

Authors

DOI:

https://doi.org/10.5902/2179460X73521

Keywords:

Degradation, Hydrolytic, Polyurethane, Soil, Thermal

Abstract

A search in the Scopus and Web of Science databases covering the period from 2016 to 2021 was carried out and used to update the methodology of polyurethanes hydrolytic, thermal and soil degradation assessment. To that effect, three groups of search words were used: (1) polymer degradation AND “hydrolytic degradation” AND polyurethane; (2) polymer degradation AND “thermal degradation” AND polyurethane; and (3) polymer degradation AND “soil degradation” AND polyurethane. It was observed that the studies on the degradation of polymers are disseminated in different research groups and on a continuous basis during the survey period. The main methodologies found to perform the degradation of polymers were: method of immersion of samples in aqueous solution to evaluate hydrolytic degradation, thermogravimetric analysis, differential exploratory calorimetry and accelerated weathering to evaluate thermal degradation and inoculation of the polymer in soils with different characteristics, such as pH, moisture and organic load to assess soil degradation. Polymers can become a biodegradable solution to the environmental issues generated by plastic waste.

Downloads

Download data is not yet available.

Author Biographies

Amanda Schueng Lima, Universidade do Sul de Santa Catarina

Master's student in the Graduate Program in Environmental Sciences, University of Southern Santa Catarina. Chemical Engineer.

Rachel Farvezani Magnago, Universidade do Sul de Santa Catarina

Professor in Graduate Program in Environmental Sciences, University of Southern Santa Catarina. PhD in Chemistry.

References

ABDUL SAMAT, A.; ABDUL HAMID, Z. A.; JAAFAR, M.; YAHAYA, B. H. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers, 13, 3087, 2021. DOI: https://doi.org/10.3390/polym13183087

AL HOSNI, A. S.; PITTMAN, J. K.; ROBSON, G. D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 97, 105–114, 2019. DOI: https://doi.org/10.1016/j.wasman.2019.07.042

ALI, A.; SONG, L.; HU, J.; JIANG, J.; RAO, Q.; SHOAIB, M.; FAHAD, S.; CAI, Y.; ZHAN, X.; CHEN, F.; ZHANG, Q. Synthesis and characterization of caprolactone based polyurethane with degradable and antifouling performance. Chinese Journal of Chemical Engineering, 34, 299–306, 2021. DOI: https://doi.org/10.1016/j.cjche.2020.11.007

BORROWMAN, C. K.; BÜCKING, M.; GÖCKENER, B.; ADHIKARI, R., SAITO, K.; PATTI, A. F. LC-MS analysis of the degradation products of a sprayable, biodegradable poly(ester-urethane-urea). Polymer Degradation and Stability, 178, 1092018, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109218

BORROWMAN, C. K.; JOHNSTON, P.; ADHIKARI, R.; SAITO, K.; PATTI, A. F. Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch. Polymer Degradation and Stability, 175, 109126, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109126

BOSSA, F. D. L.; VERDOLOTTI, L.; RUSSO, V.; CAMPANER, P.; MINIGHER, A.; LAMA, G. C.; BOGGIONI, L.; TESSER, R.; LAVORGNA, M. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. Materials, 13, 3170, 2020. DOI: https://doi.org/10.3390/ma13143170

BRANNIGAN, R. P.; WALDER, A.; DOVE, A. P. Application of Modified Amino Acid-Derived Diols as Chain Extenders in the Synthesis of Novel Thermoplastic Polyester–Urethane Elastomers. ACS Sustainable Chemistry & Engineering, 5, 6902–6909, 2017. DOI: https://doi.org/10.1021/acssuschemeng.7b01110

BRZESKA, J.; TERCJAK, A.; SIKORSKA, W.; MENDREK, B.; KOWALCZUK, M.; RUTKOWSKA, M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers, 13, 1202, 2021. DOI: https://doi.org/10.3390/polym13081202

DECOLLIBUS, D. P.; MARIN, A.; ANDRIANOV, A. K. Effect of environmental factors on hydrolytic degradation of water-soluble polyphosphazene polyelectrolyte in aqueous solutions. Biomacromolecules, 11(8), 2033-8, 2010. DOI: https://doi.org/10.1021/bm100395u

Farzan, A., Borandeh, S., ZanjanizadehEzazi, N., Lipponen, S., Santos, H. A., &Seppälä, J. 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 139, 109988, 2020. DOI: https://doi.org/10.1016/j.eurpolymj.2020.109988

FENG, G. Dong; MA, Y.; ZHANG, M.; JIA, P. You; HU, L. Hong; LIU, C. Guo; ZHOU, Y. Hong. . Polyurethane-coated urea using fully vegetable oil-based polyols: Design, nutrient release and degradation. Progress in Organic Coatings, 133, 267–275, 2019. DOI: https://doi.org/10.1016/j.porgcoat.2019.04.053

GHOSH, T.; VOIT, B.; KARAK, N. Polystyrene/thermoplastic polyurethane interpenetrating network-based nanocomposite with high-speed, thermo-responsive shape memory behavior. Polymer, 200, 122575, 2020. DOI: https://doi.org/10.1016/j.polymer.2020.122575

GONZÁLEZ-GARCÍA, D.; MARCOS-FERNÁNDEZ, Á.; RODRÍGUEZ-LORENZO, L.; JIMÉNEZ-GALLEGOS, R.; VARGAS-BECERRIL, N.; TÉLLEZ-JURADO, L. Synthesis and in Vitro Cytocompatibility of Segmented Poly(Ester-Urethane)s and Poly(Ester-Urea-Urethane)s for Bone Tissue Engineering. Polymers, 10, 991, 2018. DOI: https://doi.org/10.3390/polym10090991

HAKKOU, K.; MOLINA-PINILLA, I.; RANGEL-NÚÑEZ, C.; SUÁREZ-CRUZ, A.; PAJUELO, E.; BUENO-MARTÍNEZ, M. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polymer Degradation and Stability, 167, 302–312, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.07.013

HOU, Z.; TENG, J.; WEI, J.; HAO, T.; LIU, Z.. Preparation and characterization of highly pH-sensitive biodegradable poly(ether-ester-urethane) and its potential application for drug delivery. Materials Today Communications, 28, 102527, 2021. DOI: https://doi.org/10.1016/j.mtcomm.2021.102527

HOU, Z.; XU, J.; TENG, J.; JIA, Q.; WANG, X. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Materials Science and Engineering: C, 109, 110571, 2020 DOI: https://doi.org/10.1016/j.msec.2019.110571

JOUYANDEH, M.; HADAVAND, B. S.; TIKHANI, F.; KHALILI, R.; BAGHERI, B.; ZARRINTAJ, P.; FORMELA, K.; VAHABI, H.; SAEB, M. R. Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 10, 871, 2020. DOI: https://doi.org/10.3390/coatings10090871

KALITA, H.; KAMILA, R.; MOHANTY, S.; NAYAK, S. K. Mechanical, thermal and accelerated weathering studies of bio-based polyurethane/clay nanocomposites coatings. Advances in Polymer Technology, 37, 1954–1962, 2018. DOI: https://doi.org/10.1002/adv.21853

KWIECIEŃ, K.; KWIECIEŃ, A.; STRYSZEWSKA, T.; SZUMERA, M.; DUDEK, M. Durability of ps-polyurethane dedicated for composite strengthening applications in masonry and concrete structures. Polymers, 12, 2830, 2020. DOI: https://doi.org/10.3390/polym12122830

LEE, H. T.; TSOU, C. H.; LI, C. L.; GU, J. H.; WU, C. L.; HWANG, J. J.; SUEN, M. C. Preparation and Characterization of Biodegradable Polyurethane Composites Containing Attapulgite Nanorods. Advances in Polymer Technology, 37, 208–220, 2018. DOI: https://doi.org/10.1002/adv.21658

LI, J.-W.; CHENG, Y.-H.; LEE, H.-T.; TSEN, W.-C.; CHIU, C.-W.; SUEN, M.-C. Properties and degradation of castor oil-based fluoridated biopolyurethanes with different lengths of fluorinated segments. RSC Advances, 9, 31133–31149, 2019. DOI: https://doi.org/10.1039/C9RA04654B

LI, T. T.; WANG, Y.; WANG, Y.; SUN, F., XU, J.; LOU, C. W.; LIN, J. H. Preparation of flexible, highly conductive polymer composite films based on double percolation structures and synergistic dispersion effect. Polymer Composites, 1, 1–9, 2021.

LIANG, J.; NING, R.; SUN, Z.; LIU, X.; SUN, W.; ZHOU, X. Preparation and characterization of an eco-friendly dust suppression and sand-fixation liquid mulching film. Carbohydrate Polymers, 256, 117429, 2021. DOI: https://doi.org/10.1016/j.carbpol.2020.117429

LIGIER, K.; OLEJNICZAK, K.; NAPIÓRKOWSKI, J. Wear of polyethylene and polyurethane elastomers used for components working in natural abrasive environments. Polymer Testing, 100, 107247, 2021. DOI: https://doi.org/10.1016/j.polymertesting.2021.107247

LIU, C.-H.; LEE, H.-T.; TSOU, C.-H.; GU, J.-H.; SUEN, M.-C.; CHEN, J.-K. In Situ Polymerization and Characteristics of Biodegradable Waterborne Thermally-Treated Attapulgite Nanorods and Polyurethane Composites. Journal of Inorganic and Organometallic Polymers and Materials, 27, 244–256, 2017. DOI: https://doi.org/10.1007/s10904-017-0679-5

LIU, X.; YANG, Y.; GAO, B., LI, Y.; WAN, Y. Environmentally Friendly Slow-Release Urea Fertilizers Based on Waste Frying Oil for Sustained Nutrient Release. ACS Sustainable Chemistry and Engineering, 5, 6036–6045, 2017. DOI: https://doi.org/10.1021/acssuschemeng.7b00882

LUCIO, B.; FUENTE, J. L. de la. Structural and thermal degradation properties of novel metallocene-polyurethanes. Polymer Degradation and Stability, 136, 39–47, 2017. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.12.008

MACOCINSCHI, D.; FILIP, D.; CIUBOTARU, B.-I.; DUMITRIU, R. P.; VARGANICI, C.-D.; ZALTARIOV, M.-F. Blends of sodium deoxycholate-based poly(ester ether)urethane ionomer and hydroxypropylcellulose with mucosal adhesiveness. International Journal of Biological Macromolecules, 162, 1262–1275, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.191

MANIKANDAN, A.; MANI, M. P.; JAGANATHAN, S. K.; RAJASEKAR, R.; JAGANNATH, M. Formation of functional nanofibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polymer Testing, 61, 106–113, 2017. DOI: https://doi.org/10.1016/j.polymertesting.2017.05.008

MI, H. Y.; JING, X.; HAGERTY, B. S.; CHEN, G.; HUANG, A.; TURNG, L. S. Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials and Design, 127, 106–114, 2017. DOI: https://doi.org/10.1016/j.matdes.2017.04.056

MI, H.-Y.; JING, X.; NAPIWOCKI, B. N.; HAGERTY, B. S.; CHEN, G.; TURNG, L.-S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. Journal of Materials Chemistry B, 5, 4137–4151, 2017. DOI: https://doi.org/10.1039/C7TB00419B

MiSHRA, V. K.; PATEL, R. H. Synthesis and characterization of flame retardant polyurethane: Effect of castor oil polyurethane on its properties. Polymer Degradation and Stability, 175, 109132, 2020. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109132

MOGHANIZADEH-ASHKEZARI, M.; SHOKROLLAHI, P.; ZANDI, M.; SHOKROLAHI, F. Polyurethanes with separately tunable biodegradation behavior and mechanical properties for tissue engineering. Polymers for Advanced Technologies, 29 (1), 528–540, 2018. DOI: https://doi.org/10.1002/pat.4160

MONTEIRO, W. F., MIRANDA, G. M., SOARES, R. R., SANTOS, C. A. B. dos; HOFFMANN, M. S.; CARONE, C. L. P.; LIMA, V. de; SOUZA, M. F. de; CAMPANI, A. D.; EINLOFT, S. M. O.; LIMA, J. E. de; LIGABUE, R. A. Weathering resistance of waterborne polyurethane coatings reinforced with silica from rice husk ash. Anais Da Academia Brasileira de Ciencias, 91 (4), 14p, 2019. DOI: https://doi.org/10.1590/0001-3765201920181190

PANWIRIYARAT, W.; TANRATTANAKUL, V.; CHUEANGCHAYAPHAN, N. Study on physicochemical properties of poly(ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly(butylene succinate) as soft segments. Polymer Bulletin, 74, 2245–2261, 2017 DOI: https://doi.org/10.1007/s00289-016-1833-x

PELUFO, D. I.; NETO, S. C.; GOBBO, R. C. B., SANTOS, A. J. dos; Terezo, A. J.; SIQUEIRA, A. B. de. Kinetic study of the thermal decomposition of castor oil based polyurethane. Journal of Polymer Research, 27, 2020. DOI: https://doi.org/10.1007/s10965-020-02123-3

POLO FONSECA, L.; TRINCA, R. B.; FELISBERTI, M. I. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. International Journal of Pharmaceutics, 546, 106–114, 2018. DOI: https://doi.org/10.1016/j.ijpharm.2018.05.034

REINERTE, S.; KIRPLUKS, M.; CABULIS, U. Thermal degradation of highly crosslinked rigid PU-PIR foams based on high functionality tall oil polyol. Polymer Degradation and Stability, 167, 50–57, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.06.021

ROMERO-AZOGIL, L.; BENITO, E.; MARTÍNEZ DE ILARDUYA, A.; GARCÍA-MARTÍN, M. G.; GALBIS, J. A. Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer Degradation and Stability, 153, 262–271, 2018. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.05.009

SAHOO, S.; KALITA, H.; MOHANTY, S.; NAYAK, S. K. Degradation Study of Biobased Polyester–Polyurethane and its Nanocomposite Under Natural Soil Burial, UV Radiation and Hydrolytic-Salt Water Circumstances. Journal of Polymers and the Environment, 26, 1528–1539, 2018. DOI: https://doi.org/10.1007/s10924-017-1058-6

SATTI, S. M.; SHAH, Z.; LUQMAN, A.; HASAN, F.; OSMAN, M.; SHAH, A. A. Biodegradation of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Newly Isolated Penicillium oxalicum SS2 in Soil Microcosms and Partial Characterization of Extracellular Depolymerase. Current Microbiology, 77, 1622–1636, 2020. DOI: https://doi.org/10.1007/s00284-020-01968-7

SHAH, S. A. A.; ATHIR, N.; IMRAN, M.; CHENG, J.; ZHANG, J. Thermo-mechanically improved curcumin and zwitterion incorporated polyurethane-urea elastomers. Polymer Degradation and Stability, 164, 28–35, 2019. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.03.018

SHETRANJIWALLA, S.; LI, S.; BOUZIDI, L.; NARINE, S. S. Effect of hydrothermal ageing on structure and physical properties of one-phase and two-phase entirely lipid-derived thermoplastic poly(ester urethane)s. Polymer Degradation and Stability, 135, 61–72, 2017. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.11.020

SU, S.-K.; GU, J.-H.; LEE, H.-T.; WU, C.-L.; HWANG, J.-J.; SUEN, M.-C.. Synthesis and properties of novel biodegradable polyurethanes containing fluorinated aliphatic side chains. Journal of Polymer Research, 24, 142, 2017. DOI: https://doi.org/10.1007/s10965-017-1301-9

SUN, Y.; WANG, Q.; ZHANG, S.; LI, H.; ZHANG, J.; LI, D.; LI, W. Synthesis of aromatic-doped polycaprolactone with tunable degradation behavior. Polymer Chemistry, 9, 3931–3943, 2019. DOI: https://doi.org/10.1039/C8PY00374B

TRAVINSKAYA, T. V.; BRYKOVA, A. N.; SAVELYEV, Y. V.; BABKINA, N. V.; SHTOMPEL, V. I. (Bio)degradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure. International Journal of Polymer Science, 2017. DOI: https://doi.org/10.1155/2017/8632072

VIEIRA, T.; SILVA, J. C.; BORGES, J. P.; HENRIQUES, C. Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering. European Polymer Journal, 103, 271–281, 2018. DOI: https://doi.org/10.1016/j.eurpolymj.2018.04.005

VILLEGAS-VILLALOBOS, S.; DÍAZ, L. E.; VILARIÑO-FELTRER, G.; VALLÉS-LLUCH, A.; GÓMEZ-TEJEDOR, J. A.; &VALERO, M. F. Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. Journal of Materials Research, 33, 2598–2611, 2018. DOI: https://doi.org/10.1557/jmr.2018.286

WEEMS, A. C.; EASLEY, A.; ROACH, S. R.; MAITLAND, D. J. Highly Cross-Linked Shape Memory Polymers with Tunable Oxidative and Hydrolytic Degradation Rates and Selected Products Based on Succinic Acid. ACS Applied Bio Materials, 2, 454–463, 2019. DOI: https://doi.org/10.1021/acsabm.8b00650

XIAO, M.; ZHANG, N.; ZHUANG, J.; SUN, Y.; REN, F.; ZHANG, W.; HOU, Z. Degradable poly(ether-ester-urethane)s based on well-defined aliphatic diurethane diisocyanate with excellent shape recovery properties at body temperature for biomedical application. Polymers, 11, 1–17, 2019. DOI: https://doi.org/10.3390/polym11061002

XIE, Q.; MA, C.; ZHANG, G.; BRESSY, C. Poly(ester)–poly(silyl methacrylate) copolymers: synthesis and hydrolytic degradation kinetics. Polymer Chemistry, 9, 1448–1454, 2018. DOI: https://doi.org/10.1039/C8PY00052B

YANG, H.; CHANG, H.; ZHANG, Q.; SONG, Y.; JIANG, L.; JIANG, Q.; XUE, X.; HUANG, W.; MA, C.; JIANG, B. Highly Branched Copolymers with Degradable Bridges for Antifouling Coatings. ACS Applied Materials and Interfaces, 12, 16849–16855, 2020. DOI: https://doi.org/10.1021/acsami.9b22748

YAO, J.; DAI, Z.; YI, J.; YU, H.; WU, B., & DAI, L. (2020). Degradable polyurethane based on triblock polyols composed of polypropylene glycol and ε-caprolactone for marine antifouling applications. Journal of Coatings Technology and Research, 17, 865–874, 2020. DOI: https://doi.org/10.1007/s11998-019-00313-3

ZHAO, H.; NAM, P. K. souk; RICHARDS, V. L.; LEKAKH, S. N. Thermal Decomposition Studies of EPS Foam, Polyurethane Foam, and Epoxy Resin (SLA) as Patterns for Investment Casting; Analysis of Hydrogen Cyanide (HCN) from Thermal Degradation of Polyurethane Foam. International Journal of Metalcasting, 13(1), 18–25, 2019. DOI: https://doi.org/10.1007/s40962-018-0240-5

ZHENG, F.; JIANG, P.; HU, L.; BAO, Y.; XIA, J. Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 56, 1071–1081, 2019. DOI: https://doi.org/10.1080/10601325.2018.1477479

ZHOU, K.; GONG, K.; ZHOU, Q.; ZHAO, S.; GUO, H.; QIAN, X. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. Journal of Cleaner Production, 257, 120606, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.120606

Downloads

Published

2024-05-27

How to Cite

Lima, A. S., & Magnago, R. F. (2024). Polyurethanes Thermal, Hydrolytic and Soil Degradation: Systematic Literature Review. Ciência E Natura, 46, e73521. https://doi.org/10.5902/2179460X73521