Genotoxic and antiproliferative effect of Alpinia zerumbet (Zingiberaceae) essential oil in Allium cepa biotest
DOI:
https://doi.org/10.5902/2179460X73445Keywords:
Alpinia zerumbet, Allium cepa, Test systemAbstract
The species Alpinia zerumbet popularly known as colony is quite abundant in northeastern Brazil and is widely used for medicinal purposes, due to its hypotensive and cardiovascular effect, without, however, due scientific evidence. Therefore, the objective of this study was to evaluate the genotoxic and antiproliferative effect of A. zerumbet essential oil, in test systems with Allium cepa. The chemical composition of the essential oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). The antiproliferative and genotoxic effect was tested in seven treatments with three replications, and five concentrations of essential oil (0.01 to 1.0%) using onion bulbs. Two roots were analyzed from each bulb, with a count of 500 cells per slide/root, totaling 3,000 cells per treatment. The results showed that the main chemical constituents of the essential oil were 1.8 cineole (60.50%) and terpinen-4-ol (23.80%). In the assays with A. cepa, both the mitotic index (MI) and the cellular alteration percentages differed significantly in relation to the control, through the appearance of chromosomal and nuclear aberrations at the concentrations tested, revealing possible harmful effects to human health.
Downloads
References
Akwu, N. A, Naidoo, Y, & Singh, M. (2019). Cytogenotoxic and biological evaluation of the aqueous extracts of Grewia lasiocarpa: an Allium cepa assay. S. Afr. J. Bot., 125, 371-380. DOI: https://doi.org/10.1016/j.sajb.2019.08.009
Almeida, J. C. de, Almeida, P. P. de, & Gherardi, S. R. M. (2020). Potencial antimicrobiano de óleos essenciais: uma revisão de literatura de 2005 a 2018. NRE, 17(2), 8623-8633.
Armbruster, B. L, Molin, W. T, & Bugg, M. W. (1991). Effects of the herbicide dithiopyr on cell division in wheat root tips. Pestic. Biochem. Physiol., 39, 110-120, 1991. DOI: https://doi.org/10.1016/0048-3575(91)90131-5
Azevedo, M. V. M. P. da, & Lins, S. R. O. (2020). Aplicações terapêuticas da Alpinia zerumbet (colônia) baseado na medicina tradicional: uma revisão narrativa (2010-2020). BJD, 6(11), 84222-84242. DOI: https://doi.org/10.34117/bjdv6n11-001
Bakkali, F, Averbeck, R, & Idaomar, M. (2008). Biological effects of essential oils - a review. Food Chem. Toxicol., 46, 446-475. DOI: https://doi.org/10.1016/j.fct.2007.09.106
Barcelos, F. F, Oliveira, M. L, Giovaninni, N. P. B, Lins, T. P, Filomeno, C. A, Schneider, S. Z, Pinto, V. D, Endringer, D. C, & Andrade, T. U. (2010). Estudo químico e da atividade biológica cardiovascular do óleo essencial de folhas de Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. em ratos. Rev Bras Plantas Med., 12, 48-56. DOI: https://doi.org/10.1590/S1516-05722010000100008
Canuto, K. M, Pereira, R. de C. A, Rodrigues, T. H. S, Brito, E. S. de, Lima, Y. C. de, & Pimentel, F. A. (2015). Influência do horário de colheita das folhas na composição química do óleo essencial de colônia (Alpinia zerumbet). Bol. Pesqui. Desenvolv., 102, 1-16.
Castro, K. N. de C, Lima, D. F, Vasconcelos, L. C, Santos, R. C, Pereira, A. M. L, Fogaça, F. H. dos S, Canuto, K. M, Brito, E. S. de, & Calvet, R. M. (2016). Composição química e eficácia do óleo essencial e do extrato etanólico de Alpinia zerumbet sobre Staphylococcus aureus. Arq. Inst. Biol., 83, 1-7. DOI: https://doi.org/10.1590/1808-1657000192014
Cavalcanti, B. C, Ferreira, J. R. O, Cabral. I. O, Magalhães, H. I. F. (2012). Genetic toxicology evaluation of essential oil of Alpinia zerumbet and its chemoprotective effects against H2O2-induced DNA damage in cultured human leukocytes. Food Chem. Toxicol., 50, 4051-4061. DOI: https://doi.org/10.1016/j.fct.2012.03.038
Chukwujekwu, J. C, & Staden, J. V. (2014). Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S Afr J Bot, 92, 147-150. DOI: https://doi.org/10.1016/j.sajb.2014.03.001
Cruz, J. D. da, Mpalantinos, M. A, Ramos, A. de S, Ferreira, J. L. P, Oliveira, A. A. de, Netto Júnior, N. L, Silva, J. R. de A, & Amaral, A. C. F. (2020). Chemical standardization, antioxidant activity and phenolic contents of cultivated Alpinia zerumbet preparations. Ind Crops Prod, 151, 1-9. DOI: https://doi.org/10.1016/j.indcrop.2020.112495
Cuchiara, C. C, Borges, C. S, & Bobrowski, V. L. (2012). Sistema teste de Allium cepa como bioindicador da citogenotoxicidade de cursos d’água. Cienc. Tecnol. Agropecuaria, 6(1), 33-38.
Dias, M. G, Canto-Dorow, T. S, Coelho, A. P. D, & Tedesco, S. B. (2014). Efeito genotóxico e antiproliferativo de Mikania cordifolia (L. F.) Willd. (Asteraceae) sobre o ciclo celular de Allium cepa L. Rev Bras Plantas Med, 16, 202-208. DOI: https://doi.org/10.1590/S1516-05722014000200006
Fernandes, V. M. P, Rocha, A. R. F. da S, Silva, V. E. S. da, Vale Júnior, E. P. do, Moreira, V. de A, Martins, F. A, & Lago, E. C. (2022). Potencial citotóxico, genotóxico e mutagênico de frações do extrato de Cróton L. (Euphorbiaceae). Res., Soc. Dev., 11(4), 1-11. DOI: https://doi.org/10.33448/rsd-v11i4.27142
Ferreira, D. F. (2011). Sivar: a computer statistical system. Ciênc. Agrotec., 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001
Freitas, F. A. P. S, Uchôa, I. S, & Magalhães, M.D.A.V. (2020). Importance of micro-nucleus testing as a preventive instrument in general and environmental. Braz. J. Dev., 6(9), 68530-68542. DOI: https://doi.org/10.34117/bjdv6n9-337
Frota, R. G, Amorim, Á. da S, Carneiro, J. K. R, & Oliveira, M. A. S. (2019). Citotoxicidade, genotoxicidade e mutagenicidade da infusão de Plectranthus barbatus – Lamiaceae (malva-santa) avaliada pelo sistema teste Allium cepa. Rev. Ciênc. Méd. Biol., 18(1), 67-72. DOI: https://doi.org/10.9771/cmbio.v18i1.27020
Gondim, A. N. S, Lara, A, Santos-Miranda, A, Roman-Campos, D, Launton-Santos, S, Menezes-Filho, J. E. R, Vasconcelos, C. M. L. de, Conde-Garcia, E. A, Guatimosim, S, & Cruz, J. S. (2017). (-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts. Eur. J. Pharmacol., 807, 56-63. DOI: https://doi.org/10.1016/j.ejphar.2017.04.022
Guerra, M, Souza, M. J. de. (2002). Como observar cromossomos: um guia de técnicas em citgenética vegetal, animal e humana. Ribeirão Preto: Fundação de Pesquisas Científicas de Ribeirão Preto.
Hoshina, M. M. (2002). Avaliação da possível contaminação das águas do Ribeirão Claro – município de Rio Claro, pertencente à Bacia do rio Corumbataí, por meio de testes de mutagenicidade em Allium cepa. 2002. 90 p. [Trabalho de conclusão de curso, Instituto de Biociências da Universidade Estadual Paulista “Júlio Mesquita Filho”].
Itoyama, M. M, Bicudo, H. E. M. C, & Cordeiro, J. A. (1997). Effects of caffeine on mitotic index in Drosophila prosaltans (Diptera). Brazil J Genet., 20(4), 655-657. DOI: https://doi.org/10.1590/S0100-84551997000400016
Issa, M, Chandel, S, Singh, H. P, Batish, D. R, Kohli, R. K, Yadav, S. S, & Kumari, A. (2020). Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo. Ind Crops Prod, 145, 1-8. DOI: https://doi.org/10.1016/j.indcrop.2019.112083
Janssen, A. M, & Scheffer, J. J. (1985). Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Med., 51(6), 507-511. DOI: https://doi.org/10.1055/s-2007-969577
Jahanafrooz, Z, Mousavi, M. M, Akbarzadeh, S, Hemmatzadeh, M, Maggi, F, & Morshedloo, M. R. (2024). Anti-breast cancer activity of the essential oil from grapefruit mint (Mentha suaveolens × piperita). FITOTERAPIA, 174(2), 1-10. DOI: https://doi.org/10.1016/j.fitote.2024.105875
Jezler, C.N, Batista, R. S, Alves, P. B, Silva, D. da C, Costa, L. C. do B. (2013). Histochemistry, content and chemical composition of essential oil in different organs of Alpinia zerumbet. Cienc. Rural, 43(10), 1811-1816. DOI: https://doi.org/10.1590/S0103-84782013001000013
Kim, N. S, Shin, S, Shin, G, & Bang, O. (2019). Genotoxicity evaluation of a Phragmitis rhizoma extract using a standard battery of in vitro and in vivo assays. J. Ethnopharmacol., 241, 1-28. DOI: https://doi.org/10.1016/j.jep.2019.112025
Kawai, H, Kuraya, E, Touyama, A, Higa, O, Hokamoto, K, Tokeshi, K, Yasuda, A, Naragaki, T, & Itoh, S. (2021). Improved yield and antioxidant activity ofessential oil from Alpinia zerumbet (Zingiberaceae) leaves by underwater shockwave pretreatment. Food Bioprod. Process., 25, 134-140. DOI: https://doi.org/10.1016/j.fbp.2020.11.003
Kerdudo, A, Ellong, E. N, Burger, P, Gonnot, V, Boyer, L, Chandre, F, Adenet, S, Rochefort, K, Michel, T, & Fernandez, X. (2017). Chemical composition, antimicrobial and insecticidal activities of flowers essential oils of Alpinia zerumbet (Pers.) BL Burtt & RM Sm. from Martinique Island. Chem. Biodiversity, 14(4), 1-26. DOI: https://doi.org/10.1002/cbdv.201600344
Liman, R, Kursunlu, A. N, Ciğerci, I. H, Ozmen, M, & Acikbas, Y. (2020). Assessment of the cytotoxic and genotoxic potential of pillar[5]arene derivatives by Allium cepa roots and Drosophila melanogaster haemocytes. Ecotoxicol Environ Saf, 192, 1-7. DOI: https://doi.org/10.1016/j.ecoenv.2020.110328
Matasyoh, J. C, Kiplimo, J. J, Karubiu, N. M, & Hailstorks, T. P. (2007). Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chem., 101(3), 1183-1187. DOI: https://doi.org/10.1016/j.foodchem.2006.03.021
Mercado, S. A. S, & Caleño, J. D. Q. (2019). Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Sci. Total Environ., 700, 1-34. DOI: https://doi.org/10.1016/j.scitotenv.2019.134452
Mohammed, K. P, Aarey, A, Tamkeen, S, Jahan, P. (2015). Forskolin: genotoxicity assessment in Allium cepa. Mutat Res Genet Toxicol Environ Mutagen, 777 (1), 29-32. DOI: https://doi.org/10.1016/j.mrgentox.2014.11.005
Mohanty, S, Ray, A, Sahoo, C, Sahoo, A, Jena, S, Panda, P. C, & Nayak, S. (2023). Volatile profiling coupled with multivariate analysis, antiproliferative and anti-inflammatory activities of rhizome essential oil of four Hedychium species from India. J. Ethnopharmacol., 317(12), 1-7. DOI: https://doi.org/10.1016/j.jep.2023.116835
Nascimento, A, & Prade, A. C. K. (2020). Aromaterapia: o poder das plantas e dos óleos essenciais. Recife: Fiocruz.
Nag, A, Chakrabarti, M, Banerjee, R, & Mukherjee, A. (2019). Evaluation of cytotoxicity and antioxidant properties of some Zingiberaceae plants. Int. J. Green Pharm., 12(4), 870-875. DOI: https://doi.org/10.22377/ijgp.v12i04.2268
Orlanda, J. F. F, & Nascimento, A. R. (2015). Chemical composition and antibacterial activity of Ruta graveolens L. (Rutaceae) volatile oils, from São Luís, Maranhão, Brazil. S Afr J Bot, 99, 103-106. DOI: https://doi.org/10.1016/j.sajb.2015.03.198
Ozaslan, M, & Oguzkan, S. B. (2018). Use of plant extracts in alternative medicine. Pak J Biol Sci, 21(1), 1-7. DOI: https://doi.org/10.3923/pjbs.2018.1.7
Parvan, L. G, Leite, T. G, Freitas, T. B, Pedrosa, P. A. A, Calixto, J. S, & Agostinho, L. de A. (2020). Bioensaio com Allium cepa revela genotoxicidade de herbicida com flumioxazina. Rev Pan-Amaz Saude, 1, 1-10. DOI: https://doi.org/10.5123/S2176-6223202000544
Pastori, T, Kuhn, A. W, Tedesco, M, Hoffmann, C. E, Neves, L. A. S, Canto-Dorow, T. S, & Tedesco, S. B. (2015). Ação genotóxica e antiproliferativa de Polygonum punctatum Elliott (Polygonaceae) sobre o ciclo celular de Allium cepa L. Rev Bras Plantas Med., 17(2), 186-194. DOI: https://doi.org/10.1590/1983-084X/13_023
Prajitha, V, & Thoppil, J. E. (2016). Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. S Afr J Bot, 102, 18-25. DOI: https://doi.org/10.1016/j.sajb.2015.06.018
Pathiratne, A, Hemachandra, C. K, & Silva, N. (2015). Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environ. Monit. Assess., 187(12), 1-12. DOI: https://doi.org/10.1007/s10661-015-4954-z
Preti, D, Romagnoli, R, Rondanin, R, Cacciari, B, Hamel, E, Balzarini, J, Liekens, S, Schols, D, Estévez-Sarmiento, F, Quintana, J, & Estévez, F. (2018). Design, synthesis, in vitro antiproliferative activity and apoptosis-inducingstudies of 1- (30,40,50-trimethoxyphenyl)-3-(20-alkoxycarbonylindolyl)-2-propen-1-onederivatives obtained by a molecular hybridisation approach. J Enzyme Inhib Med Chem, 33(1), 1225-1238. DOI: https://doi.org/10.1080/14756366.2018.1493473
Rezende, M. E de, JasmimII, J. M, CapriniII, G. P, Sousa, E. P. de, Schripsema, J, & ThiébautII, J. T. L. (2011). Teor e composição química do óleo essencial de alpínia em razão da adubação e da disponibilidade de água no solo. Rev. Ceres, 58(2), 208-215. DOI: https://doi.org/10.1590/S0034-737X2011000200012
Roman Junior, W. A, Gomes, D. B, Zanchet, B, Schönell, A. P, Diel, K. A. P, Banzato, T. P, Ruiz, A. L. T. G, Carvalho, J. E, Neppel, A, Barison, A, & Santos, C. A. M. (2017). Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev. Bras. Farmacogn., 27, 592-598. DOI: https://doi.org/10.1016/j.bjp.2017.05.007
Santos, M. S, Jezler, C. N, Oliveira, A. R. M. F, Oliveira, R. A, Mielke, M. S, & Costa, L. C. B. (2012). Harvest time and plant age on the content and chemical composition of the essential oil of Alpinia zerumbet. Hortic. Bras., 30, 385-390. DOI: https://doi.org/10.1590/S0102-05362012000300005
Selles, S. M. A, Belhamiti, B. T, Kouidri, M, Amrane, A. A, Kadari, Y, Kaddour, Z, & Kabrit, S. (2024). Chemical compounds, antioxidant and scolicidal potencies of Thymus fontanesii essential oil. Exp. Parasitol., 257, 1-15. DOI: https://doi.org/10.1016/j.exppara.2024.108699
Schreiner, G. E, Eckert, G. L, Schuster, M. F, Baroni, S, Pelegrin, C. M. G. de, & Dartora, N. (2024). Cytotoxic and genotoxic effects of aqueous extracts of Aloysia gratissima (Gillies & Hook.) Tronc. using Allium cepa L. assay. Pharmacol Res, 2(1), 1-16. DOI: https://doi.org/10.1016/j.prenap.2023.100011
Sharma, A, Singh, H. P, Batish, D. R, & Kohli, R. K. (2019). Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf, 171, 863-870. DOI: https://doi.org/10.1016/j.ecoenv.2018.12.091
Silva, E. A. J, Estevam, E. B. B, Silva, T. S, Nicolella, H. D, Furtado, R. A, Alves, C. C. F, Souchie, E. L, Martins, C. H. G, Tavares, D. C, Barbosa, L. C. A, & Miranda, M. L. D. (2019). Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Braz. J. Biol., 79(4), 697-702. DOI: https://doi.org/10.1590/1519-6984.189089
Sousa, M. M. A de, Mesquita, M. L. R, Orlanda, J. F. F, & Catunda Júnior, F. E. A. (2020). Chemical composition and phytotoxic activity of Lippia origanoides essential oil on weeds. Aust. J. Crop Sci., 14(3), 3015-3024. DOI: https://doi.org/10.21475/ajcs.20.14.03.p2595
Souza, L. F, Laughinghouse, H. D, Pastori, P, Tedesco, M. T, Kuhn, A. W, Canto-Dorow, T. S, Tedesco, S. B. (2010). Genotoxic potential of aqueous extracts of Artemisia verlotiorum on the cell cycle of Allium cepa. Int. J. Environ. Sci., 67, 871-877. DOI: https://doi.org/10.1080/00207233.2010.520457
Souza, T. de A, Lopes, M. B. P, Ramos, A. de S, Ferreira, J. L. P, Silva, J. R. de A, Queiroz, M. M. C, Araújo, K. G. de L, & Amaral, A. C. F. (2018). Alpinia essential oils and their major components against Rhodnius nasutus, a vector of chagas disease. Sci. World J., 1, 1-6. DOI: https://doi.org/10.1155/2018/2393858
Turkez, H, Arslan, M. E, & Ozdemir, O. (2017). Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol, 13(10), 1089-1098. DOI: https://doi.org/10.1080/17425255.2017.1375097
Ubessi, C, Tedesco, B. S, Silva, C. de B. da, Baldoni, M, Krysczun, D. K, Heinzmann, B. M, Rosa, I. A, & Mori, N. C. (2019). Antiproliferative potential and phenolic compounds of infusions and essential oil of chamomile cultivated with homeopathy. J. Ethnofharmacol., 239, 1-32. DOI: https://doi.org/10.1016/j.jep.2019.111907
Viana, A. R, Noro, B. G, Santos, D, Wolf, K, Neves, Y. S. das, Moresco, R. N, Ourique, A. F, Flores, E. M. M, Rhoden, C. R. B, Krause, L. M. F, & Vizzotto, B. S. (2023). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health., 86(2-3), 51-68. DOI: https://doi.org/10.1080/15287394.2022.2156956
Viana, A. R, Bottari, N. B, Santos, D, Serafin, M. B, Rossato, B. G, Moresco, R. N, Wolf, K, Ourique, A, Hörner, R, Flores, E. M. de M, Schetinger, M. R. C, Vizzotto, B. S, & Krause, L. M. F. (2022). Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. J. Toxicol. Environ. Health., 85(23), 972-987. DOI: https://doi.org/10.1080/15287394.2022.2130844
Victório, C. P, Alviano, D. S, Alviano, C. S, Lage. C. L. S. (2009). Chemical composition of the fractions of leaf oil of Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm. and antimicrobial activity. Rev. Bras. Farmacogn., 19, 697-701. DOI: https://doi.org/10.1590/S0102-695X2009000500008
Xiao, R, Wu, L, Hong, X, Tao, L, Luo, P, Shen, X. (2018). Screening of analgesic and anti‐inflammatory active component in fructus Alpiniae zerumbet based on spectrum-effect relationship and GC-MS. Biomed. Chromatogr., 32(3), 1-26. DOI: https://doi.org/10.1002/bmc.4112
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.