Genotoxic and antiproliferative effect of Alpinia zerumbet (Zingiberaceae) essential oil in Allium cepa biotest

Authors

DOI:

https://doi.org/10.5902/2179460X73445

Keywords:

Alpinia zerumbet, Allium cepa, Test system

Abstract

The species Alpinia zerumbet popularly known as colony is quite abundant in northeastern Brazil and is widely used for medicinal purposes, due to its hypotensive and cardiovascular effect, without, however, due scientific evidence. Therefore, the objective of this study was to evaluate the genotoxic and antiproliferative effect of A. zerumbet essential oil, in test systems with Allium cepa. The chemical composition of the essential oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). The antiproliferative and genotoxic effect was tested in seven treatments with three replications, and five concentrations of essential oil (0.01 to 1.0%) using onion bulbs. Two roots were analyzed from each bulb, with a count of 500 cells per slide/root, totaling 3,000 cells per treatment. The results showed that the main chemical constituents of the essential oil were 1.8 cineole (60.50%) and terpinen-4-ol (23.80%). In the assays with A. cepa, both the mitotic index (MI) and the cellular alteration percentages differed significantly in relation to the control, through the appearance of chromosomal and nuclear aberrations at the concentrations tested, revealing possible harmful effects to human health.

Downloads

Download data is not yet available.

Author Biographies

Márcia Aldeany Almeida de Sousa, Universidade Estadual da Região Tocantina do Maranhão

Graduated in Biological Sciences from the State University of Maranhão - UEMA (2017). Master in Agriculture and Environment from the State University of Maranhão - UEMA (2019). She is currently a substitute professor and member of the research group at the Environmental Chemistry Laboratory at the State University of the Tocantina Region of Maranhão - UEMAUSUL. Works as an Ad Hoc reviewer for a scientific journal.

Fernando Souza Lima Silva, Universidade Estadual da Região Tocantina do Maranhão

Graduated in Chemistry from the State University of the Tocantina Region of Maranhão - UEMASUL - 2024. He is currently a Master's student in Applied Chemistry at the State University of Santa Catarina - UDESC. Has experience in the area of ​​Environmental Biotechnology, with an emphasis on biocatalysts and spectrophotometric analysis

José Fábio França Orlanda, Universidade Estadual da Região Tocantina do Maranhão

He has a degree in Industrial Chemistry from the Federal University of Maranhão (2000), a Master's degree in Agrochemistry from the Federal University of Viçosa (2002) and a PhD in Chemistry from the Federal University of Paraíba (2011). He is currently Associate Professor I at the State University of the Tocantina Region of Maranhão (UEMASUL) and Coordinator of the Environmental Biotechnology Laboratory (LABITEC).

References

Akwu, N. A, Naidoo, Y, & Singh, M. (2019). Cytogenotoxic and biological evaluation of the aqueous extracts of Grewia lasiocarpa: an Allium cepa assay. S. Afr. J. Bot., 125, 371-380. DOI: https://doi.org/10.1016/j.sajb.2019.08.009

Almeida, J. C. de, Almeida, P. P. de, & Gherardi, S. R. M. (2020). Potencial antimicrobiano de óleos essenciais: uma revisão de literatura de 2005 a 2018. NRE, 17(2), 8623-8633.

Armbruster, B. L, Molin, W. T, & Bugg, M. W. (1991). Effects of the herbicide dithiopyr on cell division in wheat root tips. Pestic. Biochem. Physiol., 39, 110-120, 1991. DOI: https://doi.org/10.1016/0048-3575(91)90131-5

Azevedo, M. V. M. P. da, & Lins, S. R. O. (2020). Aplicações terapêuticas da Alpinia zerumbet (colônia) baseado na medicina tradicional: uma revisão narrativa (2010-2020). BJD, 6(11), 84222-84242. DOI: https://doi.org/10.34117/bjdv6n11-001

Bakkali, F, Averbeck, R, & Idaomar, M. (2008). Biological effects of essential oils - a review. Food Chem. Toxicol., 46, 446-475. DOI: https://doi.org/10.1016/j.fct.2007.09.106

Barcelos, F. F, Oliveira, M. L, Giovaninni, N. P. B, Lins, T. P, Filomeno, C. A, Schneider, S. Z, Pinto, V. D, Endringer, D. C, & Andrade, T. U. (2010). Estudo químico e da atividade biológica cardiovascular do óleo essencial de folhas de Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm. em ratos. Rev Bras Plantas Med., 12, 48-56. DOI: https://doi.org/10.1590/S1516-05722010000100008

Canuto, K. M, Pereira, R. de C. A, Rodrigues, T. H. S, Brito, E. S. de, Lima, Y. C. de, & Pimentel, F. A. (2015). Influência do horário de colheita das folhas na composição química do óleo essencial de colônia (Alpinia zerumbet). Bol. Pesqui. Desenvolv., 102, 1-16.

Castro, K. N. de C, Lima, D. F, Vasconcelos, L. C, Santos, R. C, Pereira, A. M. L, Fogaça, F. H. dos S, Canuto, K. M, Brito, E. S. de, & Calvet, R. M. (2016). Composição química e eficácia do óleo essencial e do extrato etanólico de Alpinia zerumbet sobre Staphylococcus aureus. Arq. Inst. Biol., 83, 1-7. DOI: https://doi.org/10.1590/1808-1657000192014

Cavalcanti, B. C, Ferreira, J. R. O, Cabral. I. O, Magalhães, H. I. F. (2012). Genetic toxicology evaluation of essential oil of Alpinia zerumbet and its chemoprotective effects against H2O2-induced DNA damage in cultured human leukocytes. Food Chem. Toxicol., 50, 4051-4061. DOI: https://doi.org/10.1016/j.fct.2012.03.038

Chukwujekwu, J. C, & Staden, J. V. (2014). Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S Afr J Bot, 92, 147-150. DOI: https://doi.org/10.1016/j.sajb.2014.03.001

Cruz, J. D. da, Mpalantinos, M. A, Ramos, A. de S, Ferreira, J. L. P, Oliveira, A. A. de, Netto Júnior, N. L, Silva, J. R. de A, & Amaral, A. C. F. (2020). Chemical standardization, antioxidant activity and phenolic contents of cultivated Alpinia zerumbet preparations. Ind Crops Prod, 151, 1-9. DOI: https://doi.org/10.1016/j.indcrop.2020.112495

Cuchiara, C. C, Borges, C. S, & Bobrowski, V. L. (2012). Sistema teste de Allium cepa como bioindicador da citogenotoxicidade de cursos d’água. Cienc. Tecnol. Agropecuaria, 6(1), 33-38.

Dias, M. G, Canto-Dorow, T. S, Coelho, A. P. D, & Tedesco, S. B. (2014). Efeito genotóxico e antiproliferativo de Mikania cordifolia (L. F.) Willd. (Asteraceae) sobre o ciclo celular de Allium cepa L. Rev Bras Plantas Med, 16, 202-208. DOI: https://doi.org/10.1590/S1516-05722014000200006

Fernandes, V. M. P, Rocha, A. R. F. da S, Silva, V. E. S. da, Vale Júnior, E. P. do, Moreira, V. de A, Martins, F. A, & Lago, E. C. (2022). Potencial citotóxico, genotóxico e mutagênico de frações do extrato de Cróton L. (Euphorbiaceae). Res., Soc. Dev., 11(4), 1-11. DOI: https://doi.org/10.33448/rsd-v11i4.27142

Ferreira, D. F. (2011). Sivar: a computer statistical system. Ciênc. Agrotec., 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001

Freitas, F. A. P. S, Uchôa, I. S, & Magalhães, M.D.A.V. (2020). Importance of micro-nucleus testing as a preventive instrument in general and environmental. Braz. J. Dev., 6(9), 68530-68542. DOI: https://doi.org/10.34117/bjdv6n9-337

Frota, R. G, Amorim, Á. da S, Carneiro, J. K. R, & Oliveira, M. A. S. (2019). Citotoxicidade, genotoxicidade e mutagenicidade da infusão de Plectranthus barbatus – Lamiaceae (malva-santa) avaliada pelo sistema teste Allium cepa. Rev. Ciênc. Méd. Biol., 18(1), 67-72. DOI: https://doi.org/10.9771/cmbio.v18i1.27020

Gondim, A. N. S, Lara, A, Santos-Miranda, A, Roman-Campos, D, Launton-Santos, S, Menezes-Filho, J. E. R, Vasconcelos, C. M. L. de, Conde-Garcia, E. A, Guatimosim, S, & Cruz, J. S. (2017). (-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts. Eur. J. Pharmacol., 807, 56-63. DOI: https://doi.org/10.1016/j.ejphar.2017.04.022

Guerra, M, Souza, M. J. de. (2002). Como observar cromossomos: um guia de técnicas em citgenética vegetal, animal e humana. Ribeirão Preto: Fundação de Pesquisas Científicas de Ribeirão Preto.

Hoshina, M. M. (2002). Avaliação da possível contaminação das águas do Ribeirão Claro – município de Rio Claro, pertencente à Bacia do rio Corumbataí, por meio de testes de mutagenicidade em Allium cepa. 2002. 90 p. [Trabalho de conclusão de curso, Instituto de Biociências da Universidade Estadual Paulista “Júlio Mesquita Filho”].

Itoyama, M. M, Bicudo, H. E. M. C, & Cordeiro, J. A. (1997). Effects of caffeine on mitotic index in Drosophila prosaltans (Diptera). Brazil J Genet., 20(4), 655-657. DOI: https://doi.org/10.1590/S0100-84551997000400016

Issa, M, Chandel, S, Singh, H. P, Batish, D. R, Kohli, R. K, Yadav, S. S, & Kumari, A. (2020). Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo. Ind Crops Prod, 145, 1-8. DOI: https://doi.org/10.1016/j.indcrop.2019.112083

Janssen, A. M, & Scheffer, J. J. (1985). Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Med., 51(6), 507-511. DOI: https://doi.org/10.1055/s-2007-969577

Jahanafrooz, Z, Mousavi, M. M, Akbarzadeh, S, Hemmatzadeh, M, Maggi, F, & Morshedloo, M. R. (2024). Anti-breast cancer activity of the essential oil from grapefruit mint (Mentha suaveolens × piperita). FITOTERAPIA, 174(2), 1-10. DOI: https://doi.org/10.1016/j.fitote.2024.105875

Jezler, C.N, Batista, R. S, Alves, P. B, Silva, D. da C, Costa, L. C. do B. (2013). Histochemistry, content and chemical composition of essential oil in different organs of Alpinia zerumbet. Cienc. Rural, 43(10), 1811-1816. DOI: https://doi.org/10.1590/S0103-84782013001000013

Kim, N. S, Shin, S, Shin, G, & Bang, O. (2019). Genotoxicity evaluation of a Phragmitis rhizoma extract using a standard battery of in vitro and in vivo assays. J. Ethnopharmacol., 241, 1-28. DOI: https://doi.org/10.1016/j.jep.2019.112025

Kawai, H, Kuraya, E, Touyama, A, Higa, O, Hokamoto, K, Tokeshi, K, Yasuda, A, Naragaki, T, & Itoh, S. (2021). Improved yield and antioxidant activity ofessential oil from Alpinia zerumbet (Zingiberaceae) leaves by underwater shockwave pretreatment. Food Bioprod. Process., 25, 134-140. DOI: https://doi.org/10.1016/j.fbp.2020.11.003

Kerdudo, A, Ellong, E. N, Burger, P, Gonnot, V, Boyer, L, Chandre, F, Adenet, S, Rochefort, K, Michel, T, & Fernandez, X. (2017). Chemical composition, antimicrobial and insecticidal activities of flowers essential oils of Alpinia zerumbet (Pers.) BL Burtt & RM Sm. from Martinique Island. Chem. Biodiversity, 14(4), 1-26. DOI: https://doi.org/10.1002/cbdv.201600344

Liman, R, Kursunlu, A. N, Ciğerci, I. H, Ozmen, M, & Acikbas, Y. (2020). Assessment of the cytotoxic and genotoxic potential of pillar[5]arene derivatives by Allium cepa roots and Drosophila melanogaster haemocytes. Ecotoxicol Environ Saf, 192, 1-7. DOI: https://doi.org/10.1016/j.ecoenv.2020.110328

Matasyoh, J. C, Kiplimo, J. J, Karubiu, N. M, & Hailstorks, T. P. (2007). Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chem., 101(3), 1183-1187. DOI: https://doi.org/10.1016/j.foodchem.2006.03.021

Mercado, S. A. S, & Caleño, J. D. Q. (2019). Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Sci. Total Environ., 700, 1-34. DOI: https://doi.org/10.1016/j.scitotenv.2019.134452

Mohammed, K. P, Aarey, A, Tamkeen, S, Jahan, P. (2015). Forskolin: genotoxicity assessment in Allium cepa. Mutat Res Genet Toxicol Environ Mutagen, 777 (1), 29-32. DOI: https://doi.org/10.1016/j.mrgentox.2014.11.005

Mohanty, S, Ray, A, Sahoo, C, Sahoo, A, Jena, S, Panda, P. C, & Nayak, S. (2023). Volatile profiling coupled with multivariate analysis, antiproliferative and anti-inflammatory activities of rhizome essential oil of four Hedychium species from India. J. Ethnopharmacol., 317(12), 1-7. DOI: https://doi.org/10.1016/j.jep.2023.116835

Nascimento, A, & Prade, A. C. K. (2020). Aromaterapia: o poder das plantas e dos óleos essenciais. Recife: Fiocruz.

Nag, A, Chakrabarti, M, Banerjee, R, & Mukherjee, A. (2019). Evaluation of cytotoxicity and antioxidant properties of some Zingiberaceae plants. Int. J. Green Pharm., 12(4), 870-875. DOI: https://doi.org/10.22377/ijgp.v12i04.2268

Orlanda, J. F. F, & Nascimento, A. R. (2015). Chemical composition and antibacterial activity of Ruta graveolens L. (Rutaceae) volatile oils, from São Luís, Maranhão, Brazil. S Afr J Bot, 99, 103-106. DOI: https://doi.org/10.1016/j.sajb.2015.03.198

Ozaslan, M, & Oguzkan, S. B. (2018). Use of plant extracts in alternative medicine. Pak J Biol Sci, 21(1), 1-7. DOI: https://doi.org/10.3923/pjbs.2018.1.7

Parvan, L. G, Leite, T. G, Freitas, T. B, Pedrosa, P. A. A, Calixto, J. S, & Agostinho, L. de A. (2020). Bioensaio com Allium cepa revela genotoxicidade de herbicida com flumioxazina. Rev Pan-Amaz Saude, 1, 1-10. DOI: https://doi.org/10.5123/S2176-6223202000544

Pastori, T, Kuhn, A. W, Tedesco, M, Hoffmann, C. E, Neves, L. A. S, Canto-Dorow, T. S, & Tedesco, S. B. (2015). Ação genotóxica e antiproliferativa de Polygonum punctatum Elliott (Polygonaceae) sobre o ciclo celular de Allium cepa L. Rev Bras Plantas Med., 17(2), 186-194. DOI: https://doi.org/10.1590/1983-084X/13_023

Prajitha, V, & Thoppil, J. E. (2016). Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. using Allium cepa assay. S Afr J Bot, 102, 18-25. DOI: https://doi.org/10.1016/j.sajb.2015.06.018

Pathiratne, A, Hemachandra, C. K, & Silva, N. (2015). Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environ. Monit. Assess., 187(12), 1-12. DOI: https://doi.org/10.1007/s10661-015-4954-z

Preti, D, Romagnoli, R, Rondanin, R, Cacciari, B, Hamel, E, Balzarini, J, Liekens, S, Schols, D, Estévez-Sarmiento, F, Quintana, J, & Estévez, F. (2018). Design, synthesis, in vitro antiproliferative activity and apoptosis-inducingstudies of 1- (30,40,50-trimethoxyphenyl)-3-(20-alkoxycarbonylindolyl)-2-propen-1-onederivatives obtained by a molecular hybridisation approach. J Enzyme Inhib Med Chem, 33(1), 1225-1238. DOI: https://doi.org/10.1080/14756366.2018.1493473

Rezende, M. E de, JasmimII, J. M, CapriniII, G. P, Sousa, E. P. de, Schripsema, J, & ThiébautII, J. T. L. (2011). Teor e composição química do óleo essencial de alpínia em razão da adubação e da disponibilidade de água no solo. Rev. Ceres, 58(2), 208-215. DOI: https://doi.org/10.1590/S0034-737X2011000200012

Roman Junior, W. A, Gomes, D. B, Zanchet, B, Schönell, A. P, Diel, K. A. P, Banzato, T. P, Ruiz, A. L. T. G, Carvalho, J. E, Neppel, A, Barison, A, & Santos, C. A. M. (2017). Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev. Bras. Farmacogn., 27, 592-598. DOI: https://doi.org/10.1016/j.bjp.2017.05.007

Santos, M. S, Jezler, C. N, Oliveira, A. R. M. F, Oliveira, R. A, Mielke, M. S, & Costa, L. C. B. (2012). Harvest time and plant age on the content and chemical composition of the essential oil of Alpinia zerumbet. Hortic. Bras., 30, 385-390. DOI: https://doi.org/10.1590/S0102-05362012000300005

Selles, S. M. A, Belhamiti, B. T, Kouidri, M, Amrane, A. A, Kadari, Y, Kaddour, Z, & Kabrit, S. (2024). Chemical compounds, antioxidant and scolicidal potencies of Thymus fontanesii essential oil. Exp. Parasitol., 257, 1-15. DOI: https://doi.org/10.1016/j.exppara.2024.108699

Schreiner, G. E, Eckert, G. L, Schuster, M. F, Baroni, S, Pelegrin, C. M. G. de, & Dartora, N. (2024). Cytotoxic and genotoxic effects of aqueous extracts of Aloysia gratissima (Gillies & Hook.) Tronc. using Allium cepa L. assay. Pharmacol Res, 2(1), 1-16. DOI: https://doi.org/10.1016/j.prenap.2023.100011

Sharma, A, Singh, H. P, Batish, D. R, & Kohli, R. K. (2019). Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf, 171, 863-870. DOI: https://doi.org/10.1016/j.ecoenv.2018.12.091

Silva, E. A. J, Estevam, E. B. B, Silva, T. S, Nicolella, H. D, Furtado, R. A, Alves, C. C. F, Souchie, E. L, Martins, C. H. G, Tavares, D. C, Barbosa, L. C. A, & Miranda, M. L. D. (2019). Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Braz. J. Biol., 79(4), 697-702. DOI: https://doi.org/10.1590/1519-6984.189089

Sousa, M. M. A de, Mesquita, M. L. R, Orlanda, J. F. F, & Catunda Júnior, F. E. A. (2020). Chemical composition and phytotoxic activity of Lippia origanoides essential oil on weeds. Aust. J. Crop Sci., 14(3), 3015-3024. DOI: https://doi.org/10.21475/ajcs.20.14.03.p2595

Souza, L. F, Laughinghouse, H. D, Pastori, P, Tedesco, M. T, Kuhn, A. W, Canto-Dorow, T. S, Tedesco, S. B. (2010). Genotoxic potential of aqueous extracts of Artemisia verlotiorum on the cell cycle of Allium cepa. Int. J. Environ. Sci., 67, 871-877. DOI: https://doi.org/10.1080/00207233.2010.520457

Souza, T. de A, Lopes, M. B. P, Ramos, A. de S, Ferreira, J. L. P, Silva, J. R. de A, Queiroz, M. M. C, Araújo, K. G. de L, & Amaral, A. C. F. (2018). Alpinia essential oils and their major components against Rhodnius nasutus, a vector of chagas disease. Sci. World J., 1, 1-6. DOI: https://doi.org/10.1155/2018/2393858

Turkez, H, Arslan, M. E, & Ozdemir, O. (2017). Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol, 13(10), 1089-1098. DOI: https://doi.org/10.1080/17425255.2017.1375097

Ubessi, C, Tedesco, B. S, Silva, C. de B. da, Baldoni, M, Krysczun, D. K, Heinzmann, B. M, Rosa, I. A, & Mori, N. C. (2019). Antiproliferative potential and phenolic compounds of infusions and essential oil of chamomile cultivated with homeopathy. J. Ethnofharmacol., 239, 1-32. DOI: https://doi.org/10.1016/j.jep.2019.111907

Viana, A. R, Noro, B. G, Santos, D, Wolf, K, Neves, Y. S. das, Moresco, R. N, Ourique, A. F, Flores, E. M. M, Rhoden, C. R. B, Krause, L. M. F, & Vizzotto, B. S. (2023). Detection of new phytochemical compounds from Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial activity of the hexane extract. J. Toxicol. Environ. Health., 86(2-3), 51-68. DOI: https://doi.org/10.1080/15287394.2022.2156956

Viana, A. R, Bottari, N. B, Santos, D, Serafin, M. B, Rossato, B. G, Moresco, R. N, Wolf, K, Ourique, A, Hörner, R, Flores, E. M. de M, Schetinger, M. R. C, Vizzotto, B. S, & Krause, L. M. F. (2022). Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. J. Toxicol. Environ. Health., 85(23), 972-987. DOI: https://doi.org/10.1080/15287394.2022.2130844

Victório, C. P, Alviano, D. S, Alviano, C. S, Lage. C. L. S. (2009). Chemical composition of the fractions of leaf oil of Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm. and antimicrobial activity. Rev. Bras. Farmacogn., 19, 697-701. DOI: https://doi.org/10.1590/S0102-695X2009000500008

Xiao, R, Wu, L, Hong, X, Tao, L, Luo, P, Shen, X. (2018). Screening of analgesic and anti‐inflammatory active component in fructus Alpiniae zerumbet based on spectrum-effect relationship and GC-MS. Biomed. Chromatogr., 32(3), 1-26. DOI: https://doi.org/10.1002/bmc.4112

Downloads

Published

2024-08-23

How to Cite

Sousa, M. A. A. de, Silva, F. S. L., & Orlanda, J. F. F. (2024). Genotoxic and antiproliferative effect of Alpinia zerumbet (Zingiberaceae) essential oil in Allium cepa biotest. Ciência E Natura, 46, e73445. https://doi.org/10.5902/2179460X73445