Flood analysis in the Canoas, Sertão, and Mampituba rivers in the South of Brazil through hydrological and hydrodynamic modeling

Authors

DOI:

https://doi.org/10.5902/2179460X68826

Keywords:

Water resources, Extreme hydrological events, Hydrological and hydrodynamic modeling

Abstract

Floods that occur in hydrographic basins with high slopes are more susceptible to natural hazards due to the occurrence of high intensity hydrological events and the type of sloping relief. These two associated factors contribute to an increase in the destructive potential of these regions, causing economic damage and loss of life for people and animals. This study sought to assess the floodplain areas in the Canoas, Sertão, and Mampituba Rivers that contribute to the Mampituba River basin in southern Brazil, to support emergency procedures for dealing with floods and contribute to the territorial management of these spaces. From the hydrological data of the Mampituba River basin, a hydrological model was used, which generated flows that were inserted as input to a hydrodynamic model, resulting in flood patches in the plains of the modeled rivers. The calibration and integration studies of the models were carried out on a computational platform that employs the hydrometeorological knowledge represented by the models of the basin under study. The hydrodynamic modeling represented in the maps indicated that the flooding patches occur within the river channels and in the plains occupied by agriculture, with a predominance of irrigated rice paddies, pasture fields, forestry, urbanized areas, and native vegetation. In the urban region along the floodplains of the Praia Grande and Mampituba Cities, there are inns, restaurants, and residences which can suffer structural damage and expose people to the danger of a flood event of this magnitude. The results achieved allow us to infer that the integrated modeling system proved to be capable of performing efficient hydrological and hydrodynamic simulations. The methods used can be replicated in other basins and the results can support public managers for greater assertiveness in decision-making when facing the dangers of extreme weather events.

Downloads

Download data is not yet available.

Author Biographies

Ives Fiegenbaum, Universidade do Extremo Sul Catarinense, Criciúma, SC

Environmental engineer.

Sérgio Luciano Galatto, Universidade do Extremo Sul Catarinense, Criciúma, SC

Environmental engineer.

Marina Refatti Fagundes, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Environmental engineer.

Gustavo Simão, Universidade do Extremo Sul Catarinense, Criciúma, SC

Geologist.

Mariluci Pereira, Universidade do Extremo Sul Catarinense, Criciúma, SC

Biologist.

Cristiane Bardini Dal Pont, Universidade do Extremo Sul Catarinense, Criciúma, SC

Environmental engineer.

 

Bruna Borsatto Lima, Universidade do Extremo Sul Catarinense, Criciúma, SC

Environmental engineer

Jori Ramos Pereira, Universidade do Extremo Sul Catarinense, Criciúma, SC

Surveyor Engineer.

Álvaro José Back, Universidade do Extremo Sul Catarinense, Criciúma, SC

Agronomist.

References

Associação Brasileira de Normas Técnicas (ABNT). 1994. NBR 13.133 - Execução de Levantamento Topográfico. ABNT, 35 p.

APEL, H.; THIEKEN, A. H.; MERZ, B.; BLÖSCHL, G. 2006. A Probabilistic Modelling System for Assessing Flood Risks. Natural Hazards, v. 38, n. 1-2, p. 79-100.

ARDUINO, G.; REGGIANI, P.; TODINI, E.; 2005. Recent advances in flood forecasting and flood risk assessment. Hydrology & Earth System Sciences, v. 9, n. 4, p. 280-284.

BATISTA, M.; LARA, M. 2012. Fundamentos de engenharia hidráulica. Belo Horizonte. Editora: UFMG. 473 p.

BACK, Á. J.; POLETO, C. Distribuição espacial e temporal da erosividade das chuvas no estado de Santa Catarina, Brasil. Revista Brasileira de Climatologia, v. 22, n. 14, p. 1-23, jan. 2018.

BACK, Á. J. Informações climáticas e hidrológicas dos municípios catarinenses (com programa HidroClimaSC). Florianópolis: Epagri, 2020. 157p.

BOITEN, W. 2008. Hydrometry: IHE Delft lecture note series. CRC Press. 3ª edição.

BHUIYAN, M. J. A. N.; DUTTA, D. 2012. Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise. Natural Hazards, v. 61, n. 2, 729-743.

BRASIL. 2003. Plano de manejo: Parque Nacional de Aparados da Serra e Serra Geral. Encarte 3. Brasilia: Ministério Do Meio Ambiente-Ibama.

BROWN, R. A.; PASTERNACK, G. B.2014 Hydrologic and topographic variability modulate channel change in mountain rivers. Journal of Hydrology, v. 510, p. 551-564.

CABRAL, S. L.; CAMPOS, J. N. B.; SILVEIRA, C. S.; TEIXEIRA, F. A. A. 2016. Integração do SIG HEC/HMS e HRC/RAS no mapeamento de área de inundação urbana: aplicação à bacia do rio Grangeiro-CE. Geociências. São Paulo, v. 35, p. 90-101.

CHOW, V.T. 1959. Open Channel Hydraulics. McGraw-Hill, New York.

COLLISCHONN, Walter; DORNELLES, Fernando. 2013. Hidrologia para engenharia e ciências ambientais. Porto Alegre: Associação Brasileira de Recursos Hídricos. 342p.

DANTAS, M. E.; GOULART, D. R.; JACQUES, P. D.; ALMEIDA, I. S.; KREBS, A. S. J. 2005. Geomorfologia aplicada à gestão integrada de bacias de drenagem: bacia do rio Araranguá (SC), zona carbonífera sul-catarinense. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 16.,. 2005, João Pessoa, PB., Anais... João Pessoa, PB: ABRH, 74p. CD Rom.

DANTAS, C. E. O. 2012. Previsão e Controle de Inundações em Meio Urbano com Suporte de Informações Espaciais de Alta Resolução. 2012. 221p. Tese (Doutorado em Engenharia Civil), Universidade Federal de Pernambuco.

DUTTA, D.; HERATH, S.; Musiake, K. 2006. An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin. Hydrological Processes, v. 20, n. 6, p. 1365-1384.

DUTTA, D.; TENG, J.; VAZE, J.; LERAT, J.; HUGHES, J.; MARVANEK, S. 2013. Storage-based approaches to build floodplain inundation modelling capability in river system models for water resources planning and accounting. Journal of Hydrology, v. 504, p. 12-28.

FAN, F. M.; COLLISCHONN, W. 2014. Integração do modelo MGB-IPH com sistema de informação geográfica. Revista Brasileira de Recursos Hídricos. v. 19, n. 1, p. 243-254.

FAN, F. M.; SCHWANENBERG, D.; COLLISCHONN, W.; WEERTS, A.; 2015. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil. Journal of Hydrology: Regional Studies, 4, 196-227.

GALLEGOS, H. A.; SCHUBERT, J. E.; SANDERS, B. F. 2009. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, v. 32, n. 8, p. 1323-1335.

HUFF, F. A. Time Distribution of Heavy Rainstorms in Illinois. Illinois State Water Survey, Circular 173, p. 19. Jang, S.H.,1990.

Instituto Nacional de Colonização e Reforma Agrária (INCRA). 2013. Manual técnico de posicionamento e georreferenciamento de imóveis rurais. Brasília. 1ª ed.

KNEBL, M. R.; YANG, Z. L.; HUTCHISON, K.; MAIDMENT, D. R. 2005. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. Journal of Environmental Management, v. 75, n. 4, p. 325-336.

KARIM, F.; DUTTA, D.; MARVANEK, S.; PETHERAM, C.; TICEHURST, C.; LERAT, J.; KIM, A.; YANG, A. 2015. Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet–dry tropics of northern Australia. Journal of Hydrology, 522, 80-94.

LASTRA, J.; FERNÁNDEZ, E.; DÍEZ-HERRERO, A.; MARQUÍNEZ, J. 2008. Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Natural Hazards, v. 45, n. 2, p. 277-293.

MARINHO FILHO, G. M.; ANDRADE, R. S.; ZUKOWSKI JUNIOR, J. C.; MAGALHÃES FILHO, L. N. L. 2013. Modelos hidrológicos: conceitos e aplicações. Revista de Ciências Ambientais, v. 6, n. 2, p. 35-47.

MERZ, B.; KREIBICH, H.; SCHWARZE, R.; THIEKEN, A. 2010. Review article 'Assessment of economic flood damage'. Natural Hazards Earth Syst Sciencies, v. 10, n. 8, p. 1697-1724.

NETO, A. R.; CIRILO, J. A.; DANTAS, C. E. O.; Silva, E. R. 2015. Caracterização da formação de cheias na bacia do rio Una em Pernambuco: simulação hidrológica-hidrodinâmica. Revista Brasileira de Recursos Hídricos. v. 20, n. 2 p. 394-403.

RIBEIRO, C. B. M.; LIMA, R. N. S. 2011. Simulação de inundações urbanas a partir da integração de técnicas de geoprocessamento à modelagem hidráulica e hidrológica. Revista de Geografia. v. 2, n.1, p.1-9.

SARTORI, R. Z. 2018. Avaliação comparativa de modelos hidrodinâmicos para previsão de inundações: um estudo de caso do município de Getúlio Vargas-RS. 2018. 147p. Dissertação (Mestrado em Ciência e Tecnologia Ambiental). Universidade Federal da Fronteira Sul. Rio Grande do Sul.

SECRETARIA DO MEIO AMBIENTE do Rio Grande do Sul. 2020. Diagnóstico do Plano de Recursos Hídricos da Bacia Hidrográfica do Rio Mampituba. Fase A - Diagnóstico. 219p.

SILVA, E. R. 2015. Modelagem integrada para controle de cheias, previsão e alerta de inundações: estudo de caso da bacia do rio una em Pernambuco. 2015. 145f. Tese (Doutorado em Ciências em Engenharia Civil). Universidade Federal de Pernambuco. Pernambuco.

SILVEIRA, A.L.L. 2005. Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. In: Revista Brasileira de Recursos Hídricos, v.10, n.1, Jan/Mar 2005, 05-24.

SZYMANSKI, F. D. Análise de inundações em bacias montanhosas no sul do Brasil por meio de monitoramento e modelagem. 2020. 123p. Dissertação (Mestrado em Energia e Sustentabilidade). Universidade Federal de Santa Catarina.

TENG, J.; JAKEMAN, A. J.; VAZE, J.; CROKE, B. F. W.; DUTTA, D.; KIM, S. 2017. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, v. 90, p. 201-216.

TUCCI, C. E. M. 1998. Modelos hidrológicos, Ed. Universidade /UFRGS/ Associação Brasileira de Recursos Hídricos, Porto Alegre. 668p.

USACE-HEC. 2016a. Hydrologic Modeling System, HEC-HMS v4.2.1 - User’s Manual. US Army Corps of Engineers, Hydrologic Engineering Center. 614p.

USACE-RAS. 2016b. River Analysis System, HEC-RAS v5.0 - User’s Manual. US Army Corps of Engineers, Hydrologic Engineering Center. 960p.

USACE-RAS. 2016bc. River Analysis System, HEC-RAS v5.0 - 2D Modeling User’s Manual. US Army Corps of Engineers, Hydrologic Engineering Center. 171 p.

VAZE, J.; VINEY, N.; STENSON, M.; RENZULLO, L.; VAN DIJK, A.; DUTTA, D.; CROSBIE, R.; LERAT, J.; PENTON, D.; VLEESHOUWER, J.; PEETERS, L.; TENG, J.; KIM, S.; HUGHES, J.; DAWES, W.; ZHANG, Y.; LEIGHTON, B.; PERRAUD, J.-M.; JOEHNK, K.; YANG, A.; WANG, B.; FROST, A.; ELMAHDI, A.; SMITH, A.; DAAMEN, C. 2013. The Australian Water Resource Assessment System (AWRA). 20th International Congress on Modelling and Simulation. Adelaide, Australia. p. 3015-3021.

VIOLA, M. R.; MELLO, C. R.; ACERBI JR., F. W.; SILVA, A. M.; 2009. Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, v.13, n.5, p.581-590.

WEBER, E.; HASENACK, H.; FERREIRA, C. J. S. 2004. Adaptação do modelo digital de elevação do SRTM para o sistema de referência oficial brasileiro e recorte por unidade da federação. Porto Alegre, UFRGS, Centro de Ecologia.

Downloads

Published

2022-04-04 — Updated on 2022-04-18

Versions

How to Cite

Fiegenbaum, I., Galatto, S. L., Fagundes, M. R., Simão, G., Pereira, M., Pont, C. B. D., Lima, B. B., Pereira, J. R., & Back, Álvaro J. (2022). Flood analysis in the Canoas, Sertão, and Mampituba rivers in the South of Brazil through hydrological and hydrodynamic modeling. Ciência E Natura, 44, e13. https://doi.org/10.5902/2179460X68826 (Original work published April 4, 2022)

Issue

Section

Special Edition

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.