Performance evaluation in the acquisition of meteorological data from a low cost station for water sports practitioners
DOI:
https://doi.org/10.5902/2179460X63576Keywords:
Wind speed, Wind direction, Anemometer, AnemoscopeAbstract
Outdoor water sports practitioners need information about the meteorological elements in the place where they practice it, however, the information available most of the time does not take into account the specificities of the surroundings and does not contemplate the real situation. The objective of this study is to develop a weather station with real-time data transmission, for a communication application for water sports players' cell phones. The methodology was divided into three stages: elaboration of a prototype of a weather station with low cost sensors; comparison of meteorological elements obtained in the prototype and IFSC Campus Florianopolis station and transmission of meteorological elements measured by the prototype via 4G network, in real time. Field tests and adjustments in the development phase of the station were carried out at the Florianopolis Campus of the Federal Institute of Santa Catarina (IFSC), by comparing the data from the developed station and a portable weather station from Vaisala brand model WXT510. Data transmission took place with the development of a communication module coupled to a cell phone with OTG technology. As a result, the comparison between the meteorological elements measured between the stations obtained a Spearman correlation of 0.972; 0.929; 0.989; 0.944 and 1, respectively for wind speed, wind direction, air temperature, relative air humidity and atmospheric pressure, indicating that in all measured meteorological elements the time series are strongly correlated.
Downloads
References
ANARBAEV, A. I.; ZAKHIDOV, R. A.; ORLOVA, N. I.; TADZHIEV U. A. Estimation of Vertical Profile of Velocity and Specific Power of Wind Flow on the Ustyurt Plateau from Weather Station Observation Data. Applied Solar Energy, Vol. 45, Uzbekistan, 2009.
BARROS, G. L. M. Navegar é Fácil. 14.ed. Rio de Janeiro: ed. Lilian Machado de Barros, ISBN 978-85-68165-00-3, 656p. 2014.
BÁTHORY, C.; KISS, M. L.; TROHÁK, A.; DOBÓ, Z.; PALOTÁS, A. B. Preliminary research for low-cost particulate matter sensor network. E3S Web of Conferences, Hungria, 2019.
BOLANAKIS, D. E. Evaluating Performance of MEMS Barometric Sensors in Differential Altimetry Systems. IEEE Aerospace and Electronic Systems Magazine, Vol.32, Grécia, September 2017.
BOSCH SENSORTEC. Datasheet: BME280 Combined humidity and pressure sensor. Alemanha, publicação eletrônica, 55p. 2014, disponível em: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf. Acesso em: 24 mar 2020.
BROCK, F. V.; RICHARDSON, S. J. Meteorological Measurement Systems. Oxford University Press, Oxford, 2001.
BURT, S. The Weather Observer’s Handbook. Cambridge University Press, New York, 2012.
KHALED, M. D.; SAIF, M. B. R. Low Cost High Altitude Automatic Weather Station Design. Solar Energy and Sustainable Development, Vol. 7, Líbia, 12p. 2018.
LOPARDO, G.; BERTIGLIA, F.; CURCI, S.; ROGGERO, G.; MERLONE, A. International Journal of Climatology, Vol.34(4), pp.1297-1310, Italia, 2014.
ORLANDO, S.; BALE, A.; JOHNSON, D. A. Experimental study of the effect of tower shadow on anemometer readings. Journal of Wind Engineering and Industrial Aerodynamics, Volume 99, Waterloo, Canada, 2011.
PALLOTTA, M.; HERDIES, D. L.; GONÇALVES, L. G. G. Estudo das condições de tempo e conforto térmico no desempenho esportivo aplicado à maratona da cidade do rio de janeiro. Revista Brasileira de Meteorologia, v.30, n.2, 223 - 240, 2015.
RODRIGUES, A. M.; PITA, G. P. A. Caracterização do Escoamento e Fluxo Atmosférico de Calor Latente em Montado de Sobro. Silva Lus, v. 11, n. 2, p. 165-184, Lisboa, 2003.
RODRIGUES, T. S.; QUADRO, M. F. L.; VETROMILLA, M. F. Mapeamento eólico do campus Florianópolis do instituto federal de Santa Catarina. Ciência e Natura. v.38, Santa Maria n.1, jan.- abr. p. 354 – 359, 2016.
RUSCHEL, C; MENEZES, F. S; HAUPENTHAL, A; HUBERT, M; SCHULTZ, G. R; CERUTTI, P. R; PEREIRA, S. M.; ROESLER, H. Incidência de lesões em velejadores brasileiros de diferentes níveis técnicos. Revista Brasileira de Medicina do Esporte, 15(4), 268-271, 2009.
SEPPÄLÄ, M. Relief control of summer wind direction and velocity: a case study from Finnish Lapland. Norwegian Journal of Geography. P.117-121, 2002.
TELLIS, J. C.; STRULSON, C. A.; MYERS, M. M.; KNEAS, K. A. Relative Humidity Sensors Based on an Environment-Sensitive Fluorophore in Hydrogel Films. Analytical chemistry, EUA, 2011.
TRUCCOLO, E. C. Assessment of the wind behavior in the northern coast of Santa Catarina. Revista Brasileira de Meteorologia, v. 26, n. 3, p. 451-460, São Paulo, 2011.
WMO - WORLD METEOROLOGICAL ORGANIZATION. Guide to Meteorological Instruments and Methods of Observation, WMO n°8. Publications Board Chairperson, Genebra, 2008.
Published
Versions
- 2022-05-31 (3)
- 2022-05-02 (2)
- 2022-04-19 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.