Physical processes analysis of contrails formation over the South Brazil Region

Authors

DOI:

https://doi.org/10.5902/2179460X55316

Keywords:

Contrails climatology, Cirrus clouds, Appleman Diagram

Abstract

Contrails are clouds in the shape of condensation trails formed from hot air and particles exiting the engines of airplanes. These clouds form from the isobaric mixing of hot and humid air masses emitted by airplanes with cold ambient air. Their formation can alter the sky through cirrus clouds and the radiation balance. In this study, photographic images, satellite data and atmospheric reanalysis and radiosonde data were used to assess the occurrence of these events in the South Brazil region. The results showed that there were observed several cases of contrails in the region, mainly when the upper layer where the aircraft passed was colder and moister. Initially, several cases were selected from the observations and the Terra, Aqua and Suomi satellite images. Also, radiosonding data from Curitiba, Florianópolis and Porto Alegre were applied to the thermodynamic Appleman diagram to study the physical processes involved. The results showed that temperatures below -50 °C from cold advection and moister air at the cruising level of airplanes contribute to formation of more persistent contrails and cirrus clouds. Therefore, monitoring the environmental conditions may improve the prediction of contrails formation and better understanding the impacts on the radiation balance and climate.

Downloads

Download data is not yet available.

Author Biographies

Vanessa Lins, Universidade Federal de Santa Catarina, Florianópolis, SC

Vanessa Lins é graduanda do curso de Meteorologia da Universidade Federal de Santa Catarina.

Renato Ramos da Silva

Renato Ramos da Silva é PhD em Meteorologia pela Duke University e atualmente é professor do curso de Meteorologia do Departamento de Física da Universidade Federal de Santa Catarina.

References

APPLEMAN H. The formation of exhaust condensation trails by jet aircraft. Bull. Amer. Meteor. Soc. 1953; 34, 14–20.

ATLAS D, WANG Z, DUDA DP. Contrails to cirrus—Morphology, microphysics, and radiative properties. J. Appl. Meteor. Climatol., 2006; 45: 5–19.

BAUMGARDNER D; GANDRUD BE. A comparison of the microphysical and optical properties of particles in an aircraft contrail and mountain wave cloud. Geophys. Res. Lett., 1998; 25: 1129–1132.

BEDKA ST, MINNIS P, DUDA DP, CHEE TL, PALIKONDA R. Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations. Geophys. Res. Lett. 2013; 40, 772–777, DOI: 10.1029/2012GL054363.

BOCK L, BURKHARDT U. Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys; 2019: 19: 8163–8174, https://doi.org/10.5194/acp-19-8163-2019.

BOUCHER O, RANDALL D, ARTAXO P, BRETHERTON C, FEINGOLD G, FORSTER P, et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, Eds. Cambridge University Press, pp. 571-657, DOI:

1017/CBO9781107415324.016.

BURKHARDT U, KÄRCHER B. Global radiative forcing from contrail cirrus. Nature Climate Change. 2011; 1: 54-50.

GAO et al. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science. 2004; 303: 516–520.

GAYET JG, Febvre G, Larsen H. The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol. 1996; 13: 1300–1310.

GETTELMAN A., CHEN C. The climate impact of aviation aerosols. Geophysical Research Letters. 2013; 40: 2785-2789.

GOODMAN et al. Shape and size of contrail particles. Geophys. Res. Lett., 1998; 25: 1327–1330.

HAYWOOD JM, et al. A case study of the radiative forcing of persistent contrails evolving into contrail- induced cirrus. J. Geophys. Res., 2009; 114, D24201, DOI: 10.1029/ 2009JD012650.

HEYMSFIELD A, LAWSON RP, SACHSE GW, 1998: Growth of ice crystals in a precipitating contrail. Geophys. Res. Lett., 1998; 25: 1335–1338.

HEYMSFIELD A, DARREL BAUMGARDNER, PAUL DEMOTT, PIERS FORSTER, KLAUS GIERENS, BERND KÄRCHER. Contrail Microphysics, Bull. Amer. Meteor. Soc. 2009; 4: 465-472

IPCC, Aviation and the Global Atmosphere. Special Report of IPCC Working Groups I and III, Cambridge University Press, Cambridge, UK, 373 pp; 1999.

IRVINE EA, HOSKINS BJ, SHINE KP. The dependence of contrail formation on the weather pattern and altitude in the North Atlantic. Geophys. Res. Lett. 2012; 39: 1–5, DOI: 10.1029/2012GL051909.

IWABUCHI H, YANG P, LIOU KN, MINNIS P. Physical and optical properties of persistent contrails: Climatology and interpretation, J. Geophys. Res., 2012, 117: D6215.

KANAMITSU M. et al., NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteor Soc, 2002; 11: 1631-164.

KÄRCHER B, YU F. Role of aircraft soot emissions in contrail formation. Geophys. Res. Lett. 2009; 36: 1–5, DOI: 10.1029/2008GL036649.

KÄRCHER B, BURKHARDT U, BIER A, BOCK L, FORD IJ. The microphysical pathway to contrail formation. J. Geophys. Res. 2015; 120: 7893–7927, DOI: 10.1002/2015JD023491.

KNOLLENBERG RG. Measurements of the growth of the ice budget in a persisting contrail. J. Atmos. Sci., 1972: 29: 1367–1374.

KÜBBELER, M., et al.,. Thin and subvisible cirrus and contrails in a subsaturated environment. Atmospheric Chemistry and Physics, 2011; 11(12), 5853–5865.

LASTOVICKA J, AKMAEV RA, BEIG G, BREMER J, EMMERT JT. Global Change in the Upper Atmosphere. Science 2006; 314: (5803): 1253-1254.

LAWSON RP, Heymsfield AJ, Aulenbach SM, Jensen TL. Shapes, sizes, and light scattering properties of ice crystals in cirrus and a persistent contrail during SUCCESS. Geophys. Res. Lett., 1998; 25: 1331–1334.

LEE DS, FAHEY DW, FORSTER PM, NEWTON PJ, WIT RCN, LIM LL, OWEN B, SAUSEN R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009; 43: 3520–3537, DOI: 10.1016/j.atmosenv.2009.04.024.

LEWELLEN, DC. Persistent Contrails and Contrail Cirrus. Part II: Full Lifetime Behavior. J Atmos Sci. 2014; 71: 4420-4438.

MEERKÖTTER, R. et al.. Radiative forcing by contrails. Annales Geophysicae, 1999; 17 (8), 1080–1094.

MINNIS, P., AYERS, J. K., PALIKONDA, R., & PHAN, D.. Contrails, cirrus trends, and climate. Journal of Climate, 2004; 17 (8), 1671–1685.

PAOLI R, SHARIFF K. Contrail Modeling and Simulation. Annu. Rev. Fluid Mech., 2016;48:393–427, DOI: 10.1146/annurev-fluid-010814-

PAOLI R, THOURON O, ESCOBAR J, PICOT J, CARIOLLE D. High- resolution large-eddy simulations of stably stratified flows: Application to subkilometer-scale turbulence in the upper troposphere–lower stratosphere. Atmos. Chem. Phys., 2014; 14: 5037–5055.

POELLOT MR, ARNOTT WP, HALLETT J. In-situ observations of contrail microphysics and implications for their radiative impact. J. Geophys. Res., 1999; 104: 12077–12084.

RAP A, FORSTER P, JONES A, BOUCHER O, HAYWOOD J, BELLOUIN N, DE LEON R, 2010: Parameterization of contrails in the UK Met Office Climate Model. J. Geophys. Res., 115, D10205.

SANTER BD, et al. Human and natural influences on the changing thermal structure of the atmosphere. PNAS, 2013; 110 (43) 17235-17240.

SCHRÖDER F et al. On the transition of contrails into cirrus clouds. J. Atmos. Sci., 2000; 57: 464–480.

SCHUMANN U. Contrail cirrus. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 231–255, 2002.

SCHUMANN U. Formation, properties and climatic effects of contrails. Comptes Rendus Phys. 2005; 6: 549–565, DOI: 10.1016/j.crhy.2005.05.002.

SCHUMANN U et al. In situ observations of particles in jet aircraft exhausts and contrails for different sulfur-containing fuels. J. Geophys. Res. 1996; 101: 6853–6869.

SCHUMANN U, HEYMSFIELD AJ. On the Life Cycle of Individual Contrails and Contrail Cirrus. Meteorol. Monogr. 2017; 58: 3.1-3.24, DOI: 10.1175/AMSMONOGRAPHS-D-16-0005.1.

SCHUMANN U, P. JEßBERGER, C. VOIGT. Contrail ice particles in aircraft wakes and their climatic importance. Geophys. Res. Lett. 2013; 40: 2867–2872, DOI: 10.1002/grl.50539.

STORDAL F et al. Is there a trend in cirrus cloud cover due to aircraft traffic? Atmos. Chem. Phys. 2005; 5: 2155-2162.

STUBER N, FORSTER P. The impact of diurnal variations of air traffic on contrail radiative forcing. Atmos. Chem. Phys.; 2007; 7: 3153–3162.

TRAVIS D, CARLETON A, LAURITSEN R. Contrails reduce daily temperature range. Nature; 2002; 418: 601. https://doi.org/10.1038/418601a.

UNTERSTRASSER S, GIERENS K. Numerical simulations of contrail-to-cirrus transition—Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth. Atmos. Chem. Phys., 2010; 10: 2037–2051, DOI: 10.5194/acp-10-2037-2010.

Downloads

Published

2020-09-25

How to Cite

Lins, V., & Silva, R. R. da. (2020). Physical processes analysis of contrails formation over the South Brazil Region. Ciência E Natura, 42, e15. https://doi.org/10.5902/2179460X55316

Issue

Section

Climate Variability Climate and Ocean