Statistical classification of homogenous surface temperature regions

Authors

DOI:

https://doi.org/10.5902/2179460X43661

Keywords:

Hourly temperature, Climate, Statistical classification

Abstract

Time series of hourly temperature from 146 weather stations located in Santa Catarina State – South Brazil were used to show that a compact data representation, using probability density functions (pdf) parameters, could be useful to classify homogeneous air temperature areas. The normal distribution fitted well the 146 weather stations temperature time series, presenting a median value of 0.9721 for the Pearson correlation coefficient. The means and standard deviations obtained by adjusting the Gaussian functions for the 146 stations were used as input parameters for two different classifiers: hierarchical and k-means. Both classifiers separated Santa Catarina's weather stations into four distinct groups. These groups had direct relationship with altitude ranges and with the influence of sea. The classification of weather stations in different homogeneous groups was useful to identify climatic behaviors of hourly temperatures. In addition to the characterization of the climate itself, this classification can be useful as a support for the validation of numerical weather forecast models, and for the identification of abnormal temperature time series in a regional spatial context.

Author Biography

Carlos Eduardo Salles de Araujo, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina -EPAGRI.

Possui graduação em Oceanografia pela Universidade do Estado do Rio de Janeiro (1993), mestrado em Sensoriamento Remoto pelo Instituto Nacional de Pesquisas Espaciais (1997) e doutorado em Engenharia Civil pela Universidade Federal de Santa Catarina (2008). Atualmente é pesquisador da Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, atuando na coordenação e execução de projetos de pesquisa e desenvolvimento tecnológico nas áreas de clima, meio ambiente e gestão territorial. Tem experiência nas áreas de Meteorologia, Oceanografia Física, Sistemas de Informação e Sensoriamento Remoto. 

References

ALVARES CA, STAPE JL, SENTELHAS PC, DE MORAES G, LEONARDO J, SPAROVEK G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2013;22(6):711-28.

ARTHUR D, VASSILVITSKII S. K-means++: The Advantages of Careful Seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. 2007, p. 1027–35.

CANNON, AJ. Köppen versus the computer: Comparing Köppen-Geiger and multivariate regression tree climate classifications in terms of climate homogeneity. Hydrol. Earth Syst. Sci. 2012;(16):217–29.

DALY C. Guidelines for assessing the suitability of spatial climate data sets, Int. J. Climatol. 2006; (26):707–721.

EVANS M, HASTINGS N, PEACOCK B. Statistical Distributions. 2.ed. Hoboken, NJ: John Wiley & Sons, Inc., 1993.

HAIDEN T, DAHOUI M, INGLEBY B, ROSNAY P DE, PRATES C, KUSCU E, et al. Use of in situ surface observations at ECMWF. ECMWF Tech Memo [Internet]. 2018;(November). Available from: https://www.ecmwf.int/node/18748.

HINKLE DE, WIERSMA W, JURS SG. Applied Statistics for the Behavioral Sciences. 5th ed. Boston: Houghton Mifflin; 2003.

FOVELL RG, FOVELL MYC. Climate zones of the conterminous United States defined using cluster analysis. J. Climate. 1993;(6):2103–35.

GERSTENGARBE F, WERNER P, FRAEDRICH K. Applying Non-Hierarchical Cluster Analysis Algorithms to Climate Classification: Some Problems and their Solution. Theor. Appl. Climatol. 1999;(64):143–150.

HUBBARD KG. 2001 Multiple station quality control procedures. In: Automated Weather Stations for Applications in Agriculture and Water Resources Management - AGM-3 WMO-TD1074. 2001, p.133-136.

MASSIGNAM AM, ANTUNES EN, MARASCHIN F. Banco de Dados Agrometeorológicos. In: Silva, E. Boletim Ambiental Síntese Trimestral - Inverno 2015. Florianópolis: Epagri, 2016. 51 p. (Documento, 253).

MEDEIROS M, MUNARI DB, BEZERRA ALQ, ALVES MA. Pesquisa qualitativa em saúde: implicações éticas. In: Ghilhem D, Zicker F, editors. Ética na pesquisa em saúde: avanços e desafios. Brasília: Letras Livres UnB; 2007. p. 99-118.

MEEK DW, HATFIELD JL. Data quality checking for single station meteorological databases. Agric. For. Meteor. 1994; (69):85-109.

KÖPPEN W. Das geographisca System der Klimate. In: Köppen W, Geiger R, editors. Handbuch der Klimatologie. Berlin: Gebrüder Borntraeger; 1936. 1C, p. 1–44.

PEEL MC, FINLAYSON BL, McMAHON, TA. Updated world map of the KÖPPEN-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007; (11):1633–44.

POVEY AC, GRAINGER RG. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 2015;8(11):4699–718.

ROHLI RV, VEGA AJ Climatology. 2nd ed. Jones & Bartlett Learning, 2012.

SÁ JUNIOR A., CARVALHO LG, SILVA FF, ALVES, MC Application of the KÖPPEN classification for climatic zoning in the state of Minas Gerais, Brazil. Theor. Appl.Climatol. 2012;(108):1–7.

THORNTHWAITE CW. An approach toward a rational classification of climate. Geogr. Rev. 1948;(38):55–94.

TIBSHIRANI R, WALTHER G, HASTIE T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Methodol. 2001, 63(2): 411–423.

TREWARTHA GT, HORN LH Introduction to climate, 5th ed. McGraw Hill, New York, NY, 1980.

UNAL Y, KINDAP T, KARACA M. Redefining the climate zones of Turkey using cluster analysis. Int J Climatol. 2003 Jul;23(9):1045–55.

VIANELLO R. ALVES. AR Meteorologia básica e aplicações. Viçosa, MG: UFV. 1991.

WARD JH. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963;(58):236–244.

YAO CS. A new method of cluster analysis for numerical classification of climate. Theor. Appl. Climatol. 1997;(57):111–118.

ZAHUMENSKÝ I. Guidelines on Quality Control Procedures for Data from Automatic Weather Stations. World Meteorol. Organ. 2004. Available from: https://www.wmo.int/pages/prog/www/IMOP/meetings/Surface/ET-STMT1_Geneva2004/Doc6.1(2).pdf .

ZHANG X, YAN X. Spatiotemporal change in geographical distribution of global climate types in the context of climate warming. Climate Dyn. 2014;(43):595–605.

ZSCHEISCHLER, J., MAHECHA MD, HARMELING S. Climate classifications: The value of unsupervised clustering. Procedia Comput. Sci. 2012;(9):897–906.

Published

2021-02-01

How to Cite

Araujo, C. E. S. de. (2021). Statistical classification of homogenous surface temperature regions. Ciência E Natura, 43, e8. https://doi.org/10.5902/2179460X43661