Suppression of Pratylenchus brachyurus and soybean growth inoculated with arbuscular mycorrhizal fungus
DOI:
https://doi.org/10.5902/2179460X40961Keywords:
Glycine max, Rhizoglomus clarum, Inoculant, Mycorrhization, PhytonematodeAbstract
Arbuscular mycorrhizal fungi perform a variety of plant-beneficial processes. including increased resistance to disease. The objective of this work was to study arbuscular mycorrhizal fungus Rhizoglomus clarum effect on phytonematode Pratylenchus brachyurus suppression and on soybean plants growth. Two experiments were performed under greenhouse conditions. First. soybean plants growth was evaluated in mycorrhizal fungi presence and absence. In the second experiment. phytonematode damage in soybean cultivated in mycorrhizal fungi presence and absence was evaluated. During soybean flowering was evaluated mycorrhizal colonization, dry matter, nodulation, chlorophyll and nutrient content in plant tissue, nematodes number in soil and root penetration, and nematode reproduction factor was obtained, R. clarum mycorrhizal colonization reduced by 64% the number of nematodes penetrated in roots and increased soybean plants nodulation, nutrient absorption and dry matter accumulation. The stimulation to mycorrhization is a strategy to reduce damage caused by Pratylenchus brachyurus to soybean plants.
Downloads
References
O PORTAL DO CONTEÚDO AGROPECUÁRIO - AGROLINK. (2019) NovaTero é a primeira empresa do Brasil a obter registro do MAPA para comercialização de inoculante. Disponível em: www.agrolink.com.br . Acesso em: 28 de fevereiro de 2019.
ANZANELLO R, SOUZA PVD, CASAMALI B. Fungos micorrízicos arbusculares (FMA) em porta-enxertos micropropagados de videira. Bragantia. 2011; (70): 409-6.
ASMUS G, FERRAZ LCCB. Effect of population densities of Heterodera glycines race 3 on leaf area. photosynthesis and yield of soybean. Fitopalogia Brasileira. 2002; (27):273-5.
BELO MSSP, PIGNATI W, DORES EFGC, MOREIRA JC, PERES F. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. Revista Brasileira de Saúde Ocupacional. 2012;(37):78-10.
BONETTI JIS, FERRAZ S. Modificação do método de Hussey e Barker para extração de ovos de Meloidogyne exígua do cafeeiro. Fitopatologia Brasileira. 1981;(6):553-9.
BRESSAN W, SIQUEIRA JO, VASCONCELLOS CA, PURCINO AAC. Fungos micorrízicos e fósforo. no crescimento. nos teores de nutrientes e na produção do sorgo e soja consorciados. Pesquisa Agropecuária Brasileira. 2001;(36):315-8.
BRIDA A; CORREIA ÉCSS; WILCKEN SRS. Susceptibility of soybean cultivars to the root lesion nematode. Summa phytopathol. 2017;(43):248-9.
BYRD, Jr. D. W.; KIRKPATRICK, J.; BAEKER, K. R. An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol. 1983; (15): 142-143.
CAMERON D, NEAL A, VAN WEES S, TON J. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science. 2013;(18):539-6.
CASTILLO CG, OEHL F, SIEVERDING E. Arbuscular mycorrhizal fungal diversity in wheat agroecosystems in Southern Chile and effects of seed treatment with natural products. Journal of Soil Science and Plant Nutrition. 2016;(16):967-9.
COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO - CQFS-RS/SC Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. 11° ed. Porto Alegre: Núcleo Regional Sul da Sociedade Brasileira de Ciência do Solo. 2016. 400 p.
ELSEN A, GERVACIO D, SWENNEN R, DE WAELE D. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza. 2008;(18):251-5.
FERREIRA DF. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Science and Agrotechnology. 2014(38):109-3.
FERREIRA PAA, CERETTA CA, SORIANIA HH, TIECHERA TL, SOARES CRFS, ROSSATO LV, NICOLOSO FT, BRUNETTO G, PARANHOS JT, CORNEJO P. Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Applied Soil Ecology. 2015;(91):37-10.
FREITAS JRB, MOITINHO MR, TEIXEIRA DB, BICALHO ES, SILVA JÚNIOR JF DA, SIQUEIRA DS, BARBOSA BFF, SOARES PLM, PEREIRA GT. Soil Factors Influencing Nematode Spatial Variability in Soybean. Agronomy Journal. 2017;(109): 610-9.
GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist. 1980;(84):489-11.
HASHEM A, KUMAR A, AL-DBASS AM, ALQARAWI AA, AL-
ARJANI A-BF, SINGH G, FAROOQ M, ABD ALLAH EF. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of Biological Sciences. 2018;(26):614-10.
HAYMANN DS, MOSSE B. Plant growth response to vesicular-arbuscular mycorrhiza I, growth of endogone inoculated plants in phosphate deficient soils. New Phytologist. 1971;(70):19-9.
JENKINS WR. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter. 1964;(48):692-6.
LIMA FSO, SANTOS GR, NOGUEIRA SR, SANTOS PRR, CORREA V. Population dynamics of the root lesion nematode. Pratylenchus brachyurus. in soybean fields in Tocantins state and its effect to soybean yield. Nematropica. 2015;(45):170-7.
MATSUO É, SEDIYAMA T, OLIVEIRA RDL, CRUZ CD, OLIVEIRA RCT. Avaliação de genótipos de soja em relação ao nematoide de cisto. Bragantia. 2012;(71):173-6.
MONDANI F, KHANI K, HONARMAND SJ, SAEIDI M. Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agricultural Water Management. 2019;(213):707-6.
EL MUJTAR V, MUÑOZ N, MC CORMICK BP, PULLEMAN M, TITTONELL P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Global Food Security. 2019;(20):132-10.
NICOLSON TH; WALKER C. The Glomeromycota: a Species List with New Families and New Genera. 1° ed. Gloucester. England: CreateSpace Independent Publishing Platform. 2010. 58p.
NORONHA MA, MUNIZ MFS, CRUZ MM, ASSUNÇÃO MC, CASTRO JMC OLIVEIRA ERL. MIRANDA CGS. MACHADO ACZ. Espécies de Meloidogyne e de Pratylenchus em áreas cultivadas com cana-de-açúcar no estado de Alagoas. Ciência Rural. 2017;(47):1-3.
PASARIBU A, MOHAMAD RB, HASHIM A, RAHMAN ZA, OMAR D, MORSHED MM. Effect of Herbicide on Sporulation and Infectivity of Vesicular Arbuscular Mycorrhizal (Glomus mosseae) Symbiosis with Peanut Plant. The Journal of Animal & Plant Sciences. 2013;(23):1671-7.
PEREIRA MG, SANTOS CERS, FREITAS ADS, STAMFORD NP, ROCHA GSDC, BARBOSA AT. Interações entre fungos micorrízicos arbusculares, rizóbio e actinomicetos na rizosfera de soja. Revista Brasileira de Engenharia Agrícola e Ambiental. 2013;(17):1249-7.
RASMUSSEN PU, CHAREESRI A, NEILSON R, BENNETT AE, TACK AJM. The impact of dispersal. plant genotype and nematodes on arbuscular mycorrhizal fungal colonization. Soil Biology and Biochemistry. 2019;(132):28-7.
SALGADO FHM, MOREIRA FMS, PAULINO HB, SIQUEIRA JO, CARNEIRO MAC. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants. Pesquisa Agropecuária Tropical. 2016;(46):367-6.
SANTANA-GOMES SM, DIAS-ARIEIRA CR, BIELA F, CARDOSO MR, FONTANA LF, PUERARI HH. Sucessão de culturas no manejo de Pratylenchus brachyurus em soja. Nematropica. 2014;(44):200-6.
SCHNEIDER J, BUNDSCHUH J, NASCIMENTO CWA. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Science of the Total Environment. 2016;(572):86-11.
SCHOUTEDEN N, WAELE D, PANIS B, VOS CM. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front Microbiol. 2015;(6):1280-9.
SMITH S, READ D. Mycorrhizal Symbiosis. 3. ed. San Diego: Academic Press. 2008. 605 p.
TCHABI A, HOUNTONDJI FCC, OGUNSOLA B, LAWOUIN L, COYNE D, WIEMKEN A, OEHL F. The influence of arbuscular mycorrhizal fungi inoculation on micro-propagated hybrid yam (Dioscorea spp.) Growth and root knot nematode (Meloidogyne spp.) Suppression. International Journal of Current Microbiology and Applied Sciences. 2016;(5):267-5.
VOS CM, TESFAHUN AN, PANIS B, WAELE D, ELSEN A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology. 2012;(61):1-6.
WANG X, PAN Q, CHEN F, YAN X, LIAO H. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza. 2011;(21):173-8.
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.