Analysis of the oscillatory behavior of van der Waals fluid droplets under microgravity conditions using the Smoothed Particle Hydrodynamics method

Géssica Ramos da Silva, Maicon de Paiva Torres, Marciana Lima Góes, Helio Pedro Amaral Souto


In the present work, the Smoothed Particle Hydrodynamics method (SPH) is employed in the modeling of a two-dimensional drop formation problem, without an external atmosphere, using a van der Waals fluid. In addition, influences of Reynolds number, initial aspect ratio and Péclet number on drops oscillatory behavior are studied in open space conditions with zero gravity assumption. In view of the most recent researches in drops formation field using the SPH method, a hyperbolic kernel is applied to all simulations in order to ensure uniform drops liquid formation, i.e., without particle agglomeration. Through the usage of this smoothing function the tensile instability is reduced, avoiding unnecessary numerical treatments.


Oscillation; Péclet number; Reynolds number; Aspect ratio; Smoothed Particle Hydrodynamics


Bonilla, B., Herrera, J. (2006). Revisando la ecuación de van der Waals. Revista Mexicana de Física E, 52(1), 65–77.

Gingold, R. A., Monaghan, J. J. (1977). Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Monthly

Notices of the Royal Astronomic Society, 181, 375–389.

Góes, M. L. (2016). Estudo de interfaces livres empregando o método Smoothed Particle Hydrodynamics (SPH) e as equações de estado de van der Waals e de Martin. Tese de Doutorado, Universidade do Estado do Rio de Janeiro.

Liu, G. R., Liu, M. B. (2003). Smoothed Particle Hydrodynamics: a meshfree particle method. World Scientific.

Lopez, H., Sigalotti, L. D. G. (2006). Oscillation of viscous drops with Smoothed Particle Hydrodynamics. Physical Review E, 73(5), 051,201.

Lucy, L. B. (1977). Numerical approach to testing the fission hypothesis. The Astronomical Journal, 82, 1013–1024.

Meleán, Y., Sigalotti, L. D. G. (2005). Coalescence of colliding van der Waals liquid drops. International Journal of Heat and Mass Transfer, 48(19), 4041–4061.

Meleán, Y., Sigalotti, L. D. G., Hasmy, A. (2004). On the SPH tensile instability in forming viscous liquid drops. Computer Physics Communications, 157(3), 191–200.

Nugent, S., Posch, H. (2000). Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 62(4), 4968.

Prosperetti, A. (1980). Free oscillations of drops and bubbles: the initial-value problem. Journal of Fluid Mechanics, 100(2), 333–347.

Rayleigh, L. (1879). On the capillary phenomena of jets. Proc R Soc London, 29(196-199), 71–97.

Silva, G. R. (2018). Estudo da dinâmica da formação de gotas empregando o método Smoothed Particle Hydrodynamics e a equação de estado de van der Waals. Dissertação de Mestrado, Universidade do Estado do Rio de Janeiro.

Slattery, J. C. (1999). Advance Transport Phenomena. Cambridge University Press.

Twiss, R. J., Gefell, M. J. (1990). Curved slickenfibers: a new brittle shear sense indicator with application to a sheared serpentinite. Journal of Structural Geology, 12(4), 471–481.

Yang, X., Liu, M., Peng, S. (2014). Smoothed Particle Hydrodynamics modeling of viscous liquid drop without tensile instability. Computers & Fluids, 92, 199–208.



  • There are currently no refbacks.

Copyright (c) 2019 Ciência e Natura

License URL:

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.