From circle to square, a study on the convergence of a curve sequence

Authors

DOI:

https://doi.org/10.5902/2179460X32231

Keywords:

Curves, Pontual convergence, Uniform convergence, Sequences, Trace

Abstract

In this paper we present convergence concepts applications of numerical and functions sequences to a geometric problem which raised from an analysis using GeoGebra. This question involves the traces’s family of plane curves behavior, whose initial trace of the curve is given by a circle of radius k and the whose others, intuitively, approach to a square with side measuring 2k. A proof of this convergence is done, as well a demonstration that the areas bounded by the traces of the curves and their lengths converge, respectively, to the area and length of the boundary square. We also present a brief historical setting of convergence concepts and the ideas of infinity behind these concepts. In order to be developed to graduation level, this paper goes some way meet what historically was done to determine properties of curved figures through approximations by rectilinear figures.

Downloads

Download data is not yet available.

Author Biographies

Anderson Luiz Pedrosa Porto, Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Diamantina, MG

Professor de Matemática na Universidade Federal dos Vales do Jequitinhonha e Mucuri

Douglas Frederico Guimarães Santiago, Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Diamantina, MG

Professor adjunto da Universidade Federal dos Vales do Jequitinhonha e Mucuri.

Leonardo Gomes, Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Diamantina, MG

Professor Adjunto IV da Universidade Federal dos Vales do Jequitinhonha e Mucuri UFVJM.

Márcio Henrique Marques Macedo, Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Diamantina, MG

Graduação em andamento no curso de Engenharia Mecânica pela Universidade Federal dos Vales do Jequitinhonha e Mucuri

References

Ávila, G. S. S. (2011). Várias faces da matemática, 2ª Ed. Edgar Blucher, São Paulo.

Boyer, C. B. (1996). História da Matemática, 2ª Ed. Edgar Blucher, São Paulo.

Lima, E. L. (2000). Curso de Análise, vol 2, 6ª Ed. IMPA, Rio de Janeiro.

Lima, E. L. (2004). Análise real, vol 2, 1ª Ed. IMPA, Rio de Janeiro.

Lima, E. L. (2010). Análise real, vol 1, 10ª Ed. IMPA, Rio de Janeiro.

Published

2019-07-16

How to Cite

Porto, A. L. P., Santiago, D. F. G., Gomes, L., & Macedo, M. H. M. (2019). From circle to square, a study on the convergence of a curve sequence. Ciência E Natura, 41, e23. https://doi.org/10.5902/2179460X32231

Issue

Section

Mathematics

Most read articles by the same author(s)