Agentes quelantes sulfidrílicos: uma revisão

Authors

  • Francielli Weber Santos Departamento de Química, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.
  • Cristina Wayne Nogueira Departamento de Química, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.

DOI:

https://doi.org/10.5902/2179460X27243

Abstract

The increase industrial use of metais such as berilium, cadmium, copper, lead, magnesium and nickel results inevitably on a more contaminated environment. For this reason, environmental chronic poisonings with these metais have not been unusual and is a serious human health concern. Chelation therapy has been the basis for the medical treatment of metal poisoning for the past 4 decades. Chelating agents have been used clinically as antidotes for acute and chronic metal intoxications. These compounds enhance the excretion of toxic elements such as arsenic, cadmium, lead, or mercury, which are also well-known developmental toxicants. Moreover, they also decrease the metal's toxicity by preventing it from binding to cellular target molecules. However, there are many questions concerning the use of these compounds, including a wide range of overt and hidden undesirable side effects caused by these therapeutic dithiol chelating agents. The aspects pointed out above clearly indicate that more detailed experimental and clinical experiments are required to better establish the toxicological properties of BAL, DMPS and DMSA.

Downloads

Download data is not yet available.

References

Aaseth, J., Jacobensem, D., Andersen, 0& Wickstrom, E. Treatment of mercury and lead poisoning with dimercaptosuccinic acid and sodium dimercaptopropanosulfate. Analyst. 120, 853-854 (1995).

Andersen, O. Oral cadmium exposure in mice: Toxicokinetics and efficiency of chelating agents. Toxicol. 20 (2): 83-112 (1989).

Aposhian, H.V. DMSA and DMPS- Water soluble antidotes for heavy metal poisoning. Ann. Rev.Pharmacol. Toxicol. 23: 193-215 (1983).

Aposhian, H.V, Carter, D.E., Hoover, T.D., Hsu, C.A., Maiorino, R.M. & Stine, E. DMSA, DMPS and DMPA as arsenic antidotes. Fundam.Appl.Toxicol. 4, S58-S70 (1984).

Aposhian, H.V & Aposhian, M.M. Meso-2,3-dimercaptosuccinic acid: chemical, pharmacological and toxicological properties of na orally effective metal chelating agent. Ann. Rev. Pharmacol. Toxicol. 30, 279-306 (1990).

Aposhian, H.V, Maiorino, R.M., Rivera, M., Bruce, D.C., Dart, R.C., Hurlbut, K.M., Levine, D.J., Zheng, w., Quintus, F., Carter, D., Aposhian, M.M. Human studies with the chelating agents DMPS and DMSA. Clinical Toxicology. 30, 505-528 (1992).

Aposhian, M.M., Maiorino, R.M., Zhaofa, X. & Aposhian, HV Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rats. Toxicology. 109, 49-55 (1996).

Barbosa, N.BV, Rocha, J.B.T., Zeni, G., Emanuelli, T., Beque, M.C., Braga, A.L. Effect of organic selenium on d-aminolevulinate dehydratase from liver, kidney, and brain of adult rats. Toxicol. Appl. Pharmacol. 149, 243-253 (1998).

Bechara, E.J.H., Medeiros, M.H.G., Monteiro, H.P., Hermes-Lima, M., Pereira, B., Demasi, M., Costa, CA, Adballa, D.S.P., Onuki, J., Wendel, C.M.a, Masci, P.D. A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Química Nova. 16, 385-392 (1993).

Buchet, J.P. & Lauwerys, R.R. Influence of 2,3 dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54, 323-333 (1989).

Campbell, J.R., Clarkson, T.w. & amar, M.D. The terapeutic use of 2,3-dimercaptopropane-1-sulfonate in two cases of inorganic mercury poisoning. J. Am. Med. Assoc. 256, 3127-3130 (1986).

Cantilena, L.R. & Klaassen, C.D. Comparison of the effectiveness of several chelators after single administration on the toxicity, excretion and distribution of cadmium. Toxicol. Appl. Pharmacol. 58,452-460 (1981).

Cantilena, L.R. & Klaassen, C.D. The effect of chelating agents on the excretion of endogenous metais. Toxicol. Appl, Pharmacol. 63, 344-350 (1982). 14.Chisolm, J.J.Jr. Poisoning due to heavy metais. Pediat. Clin. North. Amer. 17,591-615 (1970).

Chisolm, J.J.Jr. Evaluation of the potencial role of chelation therapy in treatment of low to moderate lead exposures. Environ. Health Perspect. 89, 67-74 (1990).

Chisolm, J.J.Jr. BAL, EDTA, DMSA and DMPS in the treatment of lead poisoning in children.Clin.Toxicol. 30(4), 493-504 (1992).

Cory-Slechta, D.A.; Weiss, B. & Cox, C. Mobilization and redistribution of lead over the course of calcium disodium ethylenediamine tetraacetate chelation therapy. J. Pharmacol. Exp. Ther. 243, 804-813 (1987).

Cory-Slechta, D.A. Mobilization and redistribution of lead over the course of DMSA chelation therapy and long term efficacy. J.PharmacoI.Exp.Ther. 246, 84-91 (1988).

Dalhamn, T. & Friberg, F. Dimercaprol (2,3 dimercaptopropanol) in chronic cadmium poisoning. Acta Pharmacol. 11, 68 (1955).

Emanuelli, T., Rocha, J.B.T., Pereira, M.E., Porciuncula, L.O, Morsch, V.M., Martins, AF. & Souza, D.O. Effect of mercuric chloride intoxication and dimercaprol treatment on aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. & Toxicol. 79, 138-143 (1996).

Farina, M., Folmer, V., Andrade, L.H., Zeni, G., Bolzan, R.C., Braga, A.L., Rocha, J.B.T. Selenoxides inhibit d-aminolevulinic acid dehydratase. Toxicol. Lett. 119, 27-37 (2001).

Flora, S.J.S.; Mathur, Seema & Mathur, R. Effects of meso-2,3-dimercaptosuccinic acid or 2,3-dimercaptopropane 1-sulfonate on beryllium-induced biochemical alterations and metal concentration in male rats. Toxicology 95, 167-175 (1995).

Gilman, A., Philips, F.S., Allen, R.P. and Koelle, E.S. The treatment of acute cadmium intoxication in rabbits with 2,3-dimercaptopropanol (BAL) and other mercaptans. Chemical Warfare Service 87, 85-101 (1946).

Granick, S. & Mauzerall, D. Porphyrin biosynthesis in erythrocytes. II. Enzimes converting delta-aminolevulinic acid to coproporphyrinogen. J. Biol. Chem. 232,1119-1140 (1958).

Hoover, T.O. & Aposhian, H.V. BAL increases the arsenic-74 content of rabbit brain. Toxicol. Appl. Pharmacol. 70, 160-162 (1983).

Jennings, F.W, Atouguia, J.M. & Murray, M. Topical chemotherapy for experimental murine African CNS-trypanosomiasis: The successful use of the arsenical, melarsoprol combined with the 5-nitroimidazole, fexinidazole or MK-436. Tropical Medicine & International Health. 1, 590-598 (1996).

Jones, M.M. & Cherian, M.G. The search for chelate antagonists for chronic cadmium intoxication. Toxicology 6, :1-25 (1990).

Jugo, S. The efficiency of chelating agents in eliminating 203 Hg from the bodies of young and adult rats. Health Physics 38, 680-682 (1980).

Kappas, A., Sassa, S., Galbraith, R.A., Nordmann, Y. The Phorphyrias. In: The Metabolic Bases of Inherited Oisease, eds. Scriver, C.R., Beaudet, A.L., Sly, WS., Valle, O. (McGraw Hill, New York), pp. 2103-2160 (1995).

Klaassen, C.O. Heavy metais and heavy-metal antagonists. In: A.G. Gilman, L.S. Goodman, T.W. Rall and F. Murad (Eds), The Pharmacological Basis of Therapeutics, Macmillan, New York, pp. 1605-1627 (1985).

Klaassen, C.O. Heavy metais and heavy-metals antagonists. In: The Pharmacological Basis of Therapeutics, eds Gilman, AG; Rall, T.W; Nies, AS. & Taylor, P. 1592-1614. New York: Pergamon Press (1990).

Klaassen, C.O. Heavy metais and heavy-metals antagonists. In: The Pharmacological Basis of Therapeutics, Eds. Wonsiewicz, M.J. & McCurdy,P. pp.1649-1671. New York: McGraw-Hill, (1996).

Keith, R.L.; Setiarahardjo, 1.; Fernando, a.; Aposhian, H.V. & Gandolfi, A.J. Utilization of renal slices to evaluate the efficacy of chelating agents for removing mercury from the kidney. Toxicology 116,67-75 (1997).

Kostygou, N.M. Pharrnakol.Toksikol. 21, 64 (1958).

Longcope, WT., Luetscher, J.A., Wintrobe, M.M. & Juger, V. The treatment of arsenical dermatitis with preparations of BAL. J. Clin. Invest. 25, 528-533 (1946).

Mant, T.G.K.; Lewis, J.L.; Mattoo, T.K.; Ridgen, S.P.A.; Volans, G.N. & House, I.M.; Wakefield, A.J. & Cole, R.S. Mercury poisoning after disc-battery ingestion. Hum. Toxicol. 6 (2), 179-181 (1987).

Miller, A.L. Dimercaptosuccinic acid (DMSA), a non-toxic, watersoluble treatment for heavy metal toxicity. Altern. Med. Rev. 3(3), 199-207 (1998).

Muckter, H.; Liebl, B.; Reichl, FX.; Hunder, G.; Walther, U. & Fichtl, B. Are we ready to replace dimercaprol (BAL) as an arsenic antidote? Hum. Exp. Toxicol. 16(8), 460-465 (1997).

Nogueira, C.W, Soares, FA, Bolzan, R.C., Jacques-Silva, M.C., Souza, D.O. and Rocha, J.B.T Investigations into the mechanism of 2,3-dimercaptopropanol neurotoxicity. Neurochemical Research 25, 1553-1558 (2000).

Nogueira, C.W, Rotta, L.N., Tavares, R.G., Souza, D.O. and Rocha, J.B.T. BAL modulates glutamate transport in synaptosomes and synaptic vesicles from rat brain. NeuroReport 12, 511-514 (2001).

Nogueira, C.W., Soares, FA., Nascimento, P.C., Muller, D., and Rocha, J.B.T. 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3- dimercaptosuccinic acid increase mercury and cadmiuminduced inhibition of d-aminolevulinate dehydratase. Toxicology 184, 85-95 (2003a).

Nogueira, C. W, Santos FW., Soares, FA., Rocha, J.B.T 2,3-Dimercaptopropanol, 2,3-Dimercaptopropane-1-Sulfonic Acid and meso-2, 3-Dimercaptosuccinic Acid Inhibit d-Aminolevulinate Dehydratase from Human Erythrocytes in vitro Environmental Research 2003b in press.

Pappas, J.B.; Ahlquist, J.T.; Allen, E.M. & Banner, W.Jr. Oral dimercaptosuccinic acid and ongoing exposure to lead: Effects on Heme synthesis and lead distribution in a rat model. Toxicol. Appl. Pharmacol. 133, 121-129 (1995).

Pepin, J., Milord, F, Khonde Na, Niyonsenga, T, Loko, L., Mpia, B. & Dewals, P. Risk-factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma-Brucel-Gambiense sleeping sickness. Transactions of the Royal Society of Tropical Medicine and Hygiene. 89, 92-97(1995).

Rocha, J.B.T., Freitas, A.J., Marques, M.B., Pereira, M.E., Emanuelli, T., Souza, D.O. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Brazilian J. Med. Biol. Res. 26, 1077-1083 (1993).

Sassa, S., Fujita, H., Kappas, A. Genetic and chemical influences on heme biosynthesis. In: Kotyk, A., Skoda, J., Paces,V., Kostka, V. (Eds.), Highlights of Modern Biochemistry, Vol. 1. VSP, Utrecht, pp.329-338 (1989).

Shimada, H.; Fukudome, S.; Kiyozumi, M.; Funakoshi, T; Adachi, T; Yasutake, A. & Kojima, S. Further study of effects of chelating agents on excretion of inorganic mercury in rats. Toxicology 77, 157-169 (1993).

Singer, A.J.; Mofenson, H.C.; Caraccio, TR. & lIasi, J. Mercury chloride poisoning due to ingestion of a stool fixative.J.ToxicoI.Clin.Toxicol. 32(5), 577-582 (1994).

Stocken, L.A. & Thompson, R.S.H. British anti-Lewisite 3. Arsenic and thiol excretion in animais after treatment of Lewisite burns. Biochem. J. 40, 548-554 (1946).

Stocken, L.A. British anti-Lewisite as an antidote to acute mercury poisoning. Biochem.J. 41, 358-360 (1947).

Suzuki, S.; Takamura, S.; Sugiki, K.; Imai, M.; Niwa, O. & Tamatani, R. Protective effects of 2,3-dimercaptopropane-1-sulfonate on mercury chloride-induced acute inhibition of enzymes trom rat duodenal mucosa and kidney cortex. Toxicology 86, 29-48 (1994).

Toet, A.E.; Dijk, A.; Savelkoul, TJ.F. & Meulenbelt, J. Mercury kinetics in a case of severe mercuric chloride poisoning treated with dimercapto-1-propane sulphonate (DMPS). Human & Experimental Toxicology 13, 11-16 (1994).

Torre, A.; Belles, M.; Llobet, J.M.; Mayayo, E. & Domingo, J.L. Comparasion of the effectiveness of 2,3-dimercaptopropanol and meso-2,3-dimercaptosuccinic acid (DMSA) as protective agents against mercuric chloride-induced nephrotoxicity in rats. 8Io/. Trace Elem. Res. 63(1),1-10 (1998).

Wang, S.C.; Ting, K.S. & Wu, C.C. Clin. Med. J. 84, 437 (1965).

Published

2003-12-09

How to Cite

Santos, F. W., & Nogueira, C. W. (2003). Agentes quelantes sulfidrílicos: uma revisão. Ciência E Natura, 25(25), 149–162. https://doi.org/10.5902/2179460X27243