Influência do zinco sobre o efeito do selênio na atividade da enzima δ-ALA-D de fígado, rim e cérebro de camundongos adultos in vitro

Autores

  • Nilda Vargas Barbosa Departamento de Química, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.
  • João Batista T. da Rocha Departamento de Química, Centro de Ciências Naturais e Exatas - CCNE Universidade Federal de Santa Maria - UFSM, Santa Maria, RS.

DOI:

https://doi.org/10.5902/2179460X27224

Resumo

O selênio é um elemento traço essencial para o homem e a sua deficiência na dieta está relacionada com o desenvolvimento de uma série de patologias, como as cardiovasculares. No entanto, muitos trabalhos têm evidenciado o efeito tóxico de determinados compostos orgânicos e inorgânicos de selênio em alguns órgãos e enzimas específicas; o qual compromete o funcionamento dos mesmos. Este trabalho aborda especificamente o efeito tóxico do selênio sobre uma das enzimas envolvidas na síntese do heme – a δ-ALA-D – e o possível papel protetor dos íons Zn++ sobre a ação tóxica deste elemento frente a enzima. O composto (CH3)2C (Seφ) (0CH3) nas concentrações testadas (12, 40 e 120 µM), inibi significativamente a atividade da enzima hepática, renal e cerebral (p<0.01). Também foi demonstrado que a interação do (CH3)2C (Seφ) (0CH3) com o ZnCl2 (100Mm) não foi capaz de proteger a enzima da inibição provocada por selênio mas potencializou efeito inibitório do composto na δ-ALA-D renal e cerebral.

Downloads

Não há dados estatísticos.

Referências

Barbosa, N.B.V.; Rocha, J.B.T.; Zeni, G.; Emanuelli, T.; Beque, M.C. & Braga, A L. (1998). Effect of organic forms selenium on daminolevulinate dehydratase from liver, kidney and brain of adult rats. Toxicology Applied Pharmacology. 49, 243-253.

Beber, F A; Wolsmeister, J; Brigo, M.J.K; Silva, M.C.J; Pereira, C.N. and Rocha, J.B.T. (1998). Ascorbic acid inhibition of hepatic deltaaminolevulinate dehydratase is mediated by na oxyding system present in liver supernatants. Int. J. Vitam. Nutr. Res. (In press).

Behne D.; Kyriakopoulos, A (1990). Indentification of type I iodothyronine 5' -deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun. 173, 1143-1149.

Bechara E.J.H; Medeiros, M.H.G.; Monteiro, H.P.; Lima, H.; Pereira, M.; Demasi, B.; Costa, M.; Abdall, C. A; Onuki, J.; Wendel, C.M.A and Masci, P.D. (1993). A free radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Química Nova. 16, 385-392.

Bevan, D.R.; Bodlaender, P. and Shemin. D. (1980)Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity. Journal of Biological Chemistry. 255, 2030-2035.

Cotgreave, I.A.; Moudeus, P.; Brattsand, R.; Hallberg, A ; Andersson, C.M.; Engman, L. (192). a (phenylselenyl) acetophenone derivatives with glutathione peroxidase: Like activity. A comparisom with Ebselen. Biochem. Pharmacol. 4443, 793-802.

Dent, A J.; Beyersmann, D.; Block, C. and Hasnain, S.S. (1990). Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by exyend X-ray absorption fine structure. Biochemistry. 29, 7822-7828.

Emanuelli, T.; Rocha, J.B.T.; Pereira, M. E.; Porciúncula, L.O and Souza, D. (1996). Effects of mercuric chloride intoxication and 2,3-dimercaptopropanol (BAL) treatment on delta-minolevulinate dehydratase from brain, kidney and liver of adult mice. Pharmacology & Toxicology. 79, 136-143.

Emanuelli, T.; Rocha, J.B.T.; Pereira, M.E.; Nascimento, P.C.; Souza, D.O G & Beber, F.A (1998). Delta-aminolevulinate dehydratase inhibition by 2,3- dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteynil residues in reduced state. Pharmacology and Toxicology. 83, 95-103.

Farina, M.; Folmer, V.; Bolzan, R.; Andrade, L.;Zeni, G.; Braga, A and Rocha, J.B.T. (2001). Selenoxides inhibit d-aminolevulinic acid dehydratase. Toxicology Letters. 119, 27-37.

Flohe, L.; Gunzler, W. A; Schock, H.H. (1973). Glutathione peroxidase: A selenium enzyme. FEBS Lett. 32, 132-134.

Ganther, H.E. (1971). Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry. 10, 4089-4098.

Ganther, H.E. (1968). Selenotrisulfides. Formation by reaction of thiols with selenious acid. Biochemistry. 7, 2898-2905.

Ganther, H.E. (1966). Enzimic synthesis of dimethyl selenide from sodium selenite in mouse extract. Biochemistry. 10, 4089-4098.

Ganther, H.E.; Corcoran, C. (1969). Selenotrisulfide. 11. Cross-linking of reduced pancreatic ribonuclease with selenium. Biochemistry. 8, 2557-2563.

Gibson, K.D.; Neuberger, A; Scott, J.J. (1955). The purification and properties of delta-aminolevulinic acid dehydratase. Biochem. J. 61, 618-629.

Goering, P.L. (1993). Lead protein interactions as a basis for lead toxicity. Neurotoxicology. 14, 45-60.

Goering, P.L. and Fowler, B.A (1984). Regulation of lead inhibition of d-aminolevulinic acid dehydratase by a low molecular weigth, high affinity renal lead-binding protein. J. Pharmacol. Exp. Therap. 14,45-60.

Goering, P.L.; Fowler, B.A (1986). Mechanism of renal lead-binding protein reversal of d-aminolevulinic acid dehydratase inhibition by lead. Pharmacol. Exp. Therap. 237, 220-225.

Goering, P.L.; Mistry, P. and Fowler, B.A (1986). A low molecular weight lead-binding protein in brain attenuates lead inhibition of delta-aminolevulinic acid dehydratase. Comparison with a renal lead-binding protein. J. Phamacol. Exp. Therap. 237, 220-225.

Greger, J.L. and Lane, H.W. (1987). The toxicology of dietary tin, aluminium and selenium. Nutritional Toxicology. (J.N.Hathcock, ed). Vo1.2. Academic. Press, San Diego, C.A.

Jacques-Silva M.C.; Nogueira, C.W.; Broch, L.C.; Flores, E.E.M & Rocha, J.B.T. (2000). Diphenyl diselenide and ascorbic acidchange deposition of selenium and ascorbic acid in liver and brain of mices. Pharmacology & Toxicology. In Press.

Jaffe, E.K. (1995). Porphobilinogen synthase, the first source of heme's asymmetry. J. Bioenergetics and Biomembranes. 27, no 2.

Linder, M.C. (1990). Nutrition and metabolism of the trace elements. 7,216-276.

Maciel, E.N.; Bolzan, R.; Braga, A L and Rocha, J.B.T. (2000). Diphenyl diselenide and diphenyl ditelluride differentially affect daminolevulinate dehydratase from liver, kidney and brain of mice. Journal of Biochemical and Molecular Toxicology, 14,1-10.

Nelson, H.M.; Ughes, M. A; Meredith, P.A (1981). Zinc, cooper and delta-aminolevulinic acid dehydratase in vitro. Toxicology, 21,261-266.

Painter, E.P. (1941). The chemistry and toxicity of selenium compounds which special reference to the selenium problem. Chem. Rev. 28, 179-213.

Rocha, J.B.T.; Freitas, A J.; Marquez., M.B.; Pereira, M. E.; Emanuelli, T & Souza, D.O (1993). Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on delta-aminolevulinate dehydratase (E.C. 4.2.1.24) of suckling rats. Brazilian Journal of Medical and Biological Research. 26, 1077-1083.

Rocha, J.B.T.; Pereira, M.E.; Emanuelli, T.; Christofari, R.S. & Souza, D. O (1995). Effeccts of mercury chloride and lead acetate treatment during the secound stage of rapid postnatal brain growth on ALA-D activity in brain, liver, kidney and blood of suckling rats. Toxicology. 100, 27-37.

Rodrigues, A L.; Bellinaso, M. L. and Dick, T (1989). Effect of some metais ions on blood and liver delta-aminolevulinate dehydratase of Pimelodus malacatus (pisces, pimelodidae). Comp. Biochem. Physiol. 94B, 65-69.

Rodrigues, A L.; Rocha, J.B.T; Pereira, M.E. & Souza, D.O (1996). Delta-aminolevulinic acid dehydratase activity in weanling and adult rats exposed to lead acetate. BulI. Environ. Contam. Toxicol. 57,47-53.

Rotruck, J.T.; Pope, A L.; Ganther, H.E.; Swanson, A B.; Hafeman, D.G.; Hoestra, W.G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science. 179, 558-560.

Sassa, S. (1982). Delta-aminolevulinic acid dehydratase assay. Enzyme. 28,133-145.

Seko,Y.; Satio, Y.; Kitahara, J.; Imura, N. (1989). Active oxygen generation by the reaction of selenite with reduced glutathione in vitro. In: Wendel, A (ed). Selenium in biology and medicine. Springer, Berlin Heidelberg. New York. pp:70-73.

Spallhoz, J.E. (1994). On the nature of selenium toxicity and carcinostatic activity. Free Radical Biology & Medicine. 17,45-64.

Tsen, C.C., Tappel, A L. (1958). Catalytic oxidation of glutathione and other sulphydril compounds biselenite. J. Bio. Chem. 233, 1230-1232.

Tsukamoto, I.; Youshinaga, T; and Sano, S. (1979). The role of zinc with special reference to the essential thiol groups in deltaaminolevulinic acid dehydratase of bovine liver. Biochimica et Biophysica Acta. 570, 167-178.

Ursini, F.; Maorino, M.; Valente, M.; Ferri, K.; Gregolin, C. (1982). Purification of pig liver of a protein which protects lipossomes and biomembranes from peroxidadtive degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxidase. Biochem. Biophys. Acta. 710,197-211.

Ursini, F.; Maiorino, M and Grregolin, Carlo. (1985). The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochimica. Et. Biophysica. Acta. 839, 62-70.

Ursini, F and Bindoli, A (1987). The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemistry and Physics of Lipids. 44, 255-276.

Downloads

Publicado

2002-12-09

Como Citar

Barbosa, N. V., & Rocha, J. B. T. da. (2002). Influência do zinco sobre o efeito do selênio na atividade da enzima δ-ALA-D de fígado, rim e cérebro de camundongos adultos in vitro. Ciência E Natura, 24(24), 49–62. https://doi.org/10.5902/2179460X27224